OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 34 — Dec. 1, 1998
  • pp: 8120–8128

Ultrasonic Hydrophone Based on Short In-Fiber Bragg Gratings

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion  »View Author Affiliations


Applied Optics, Vol. 37, Issue 34, pp. 8120-8128 (1998)
http://dx.doi.org/10.1364/AO.37.008120


View Full Text Article

Acrobat PDF (196 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the feasibility of using in-fiber Bragg gratings for measuring acoustic fields in the megahertz range. We found that the acoustic coupling from the ultrasonic field to the grating leads to the formation of standing waves in the fiber. Because of these standing waves, the system response is complex and, as we show, the grating does not act as an effective probe. However, significant improvement in its performance can be gained by use of short gratings coupled with an appropriate desensitization of the fiber. A noise-limited pressure resolution of ≈4.5 × 10<sup>−3</sup> atm/√Hz was found.

© 1998 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.7170) Medical optics and biotechnology : Ultrasound

Citation
N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, "Ultrasonic Hydrophone Based on Short In-Fiber Bragg Gratings," Appl. Opt. 37, 8120-8128 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-34-8120


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. L. Nyborg, “Optimization of exposure conditions for medical ultrasound,” Ultrasound Med. Biol. 11, 245–260 (1985).
  2. National Council on Radiation Protection and Measurements, “Biological effects of ultrasound: mechanisms and clinical implications,” NCRP Rep. No. 74 (National Council on Radiation Protection and Measurements, Bethesda, Md., 1983).
  3. B. B. Barnett, G. R. ter Haar, M. C. Ziskin, W. L. Nyborg, K. Maeda, and J. Bang, “Current status of research on biophysical effects of ultrasound,” Ultrasound Med. Biol. 20, 205–218 (1994).
  4. N. T. Sanghvi, F. J. Fry, R. Bihrle, R. S. Foster, M. H. Phillips, J. Syrus, A. V. Zaitsev, and C. W. Hennige, “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1099–1110 (1996).
  5. C. R. Hill, “Optimum acoustic frequency for focused ultrasound surgery,” Ultrasound Med. Biol. 20, 271–277 (1994).
  6. S. B. Field and J. W. Hand, eds., An Introduction to the Practical Aspects of Clinical Hyperthermia (Taylor and Francis, London, 1990).
  7. “Guidelines for the safe use of extra corporeal shock-wave lithotripsy (ESWL) devices,” in Proceedings of the Radiation Safety Committee of the European Federation of Societies for Ultrasound in Medicine and Biology, Ultrasound Med. Biol. 20, 315–316 (1994).
  8. R. P. De Paula, L. Flax, J. H. Cole, and J. A. Bucaro, “Single mode fiber ultrasonic sensor,” IEEE J. Quantum Electron. 18, 680–693 (1982).
  9. S. Knudsen and K. Blotekjaer, “An ultrasonic fiber-optic hydrophone incorporating a push–pull Sagnac interferometer,” J. Lightwave Technol. 12, 1696–1700 (1994).
  10. H. L. W. Chan, K. S. Chiang, D. C. Price, and J. L. Gardener, “The characterisation of high frequency ultrasonic fields using polarimetric optical fiber sensor,” J. Appl. Phys. 66, 1565–1570 (1989).
  11. H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, and J. Brinch, “Use of a fiber-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers,” Phys. Med. Biol. 34, 1609–1622 (1989).
  12. K. S. Chiang, H. L. W. Chan, and J. L. Gardener, “Detection of high frequency ultrasound with polarisation maintaining fiber,” J. Lightwave Technol. 8, 1221–1227 (1990).
  13. P. C. Beard and T. N. Mills, “Optical fiber sensor for the detection of laser-generated ultrasound in arterial tissues,” in Medical Sensors II and Fiber Optic Sensors, A. M. Verga Scheggi, F. Baldini, P. R. Coulet, and O. S. Wolfbeis, eds. Proc. SPIE 2331, 112–122 (1994).
  14. J. J. Alcoz, C. E. Lee, and H. F. Taylor, “Embedded fibre-optic Fabry–Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302–305 (1990).
  15. P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
  16. P. St. J. Russell, J.-L. Archambault, and L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).
  17. Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
  18. D. A. Jackson, A. D. Kersey, M. Corke, and J. D. C. Jones, “Pseudo-heterodyne detection scheme for optical interferometer,” Electron. Lett. 18, 1081–1083 (1982).
  19. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Fiber-optic grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection,” Opt. Lett. 18, 72–74 (1993).
  20. G. Kossoff, “Analysis of focusing action of spherically curved transducers,” Ultrasound Med. Biol. 5, 359–365 (1979).
  21. N. E. Fisher, S. F. O’Neill, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Response of in-fibre Bragg gratings to focused ultrasonic fields,” in Proceedings of the 12th International Conference on Optical Fiber Sensors, G. W. Day and A. D. Kersey, eds. (Optical Society of America, Washington, D.C., 1997), pp. 190–193.
  22. C. M. Sayers and C. E. Tait, Ultrasonic Properties of Transducer Backings (Butterworth, Oxford, UK, 1984), pp. 57–60.
  23. J. Kaiser, “Investigation of acoustic emission in tensile testing,” Ph.D dissertation (Technische Hochscule, Munich, Germany, 1950).
  24. N. Lagakos, G. Ku, J. Jarzynski, J. H. Cole, and J. A. Bucaro, “Desensitization of the ultrasonic response of single-mode fibers,” J. Lightwave Technol. 5, 1036–1039 (1985).
  25. Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fibre Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–785 (1997).
  26. N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited