OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 35 — Dec. 10, 1998
  • pp: 8247–8253

Photorefractive Incoherent-to-Coherent Optical Converter Based on Anisotropic Self-Diffraction in BaTiO3

Ching-Cherng Sun, Bor Wang, and Jenq-Yang Chang  »View Author Affiliations

Applied Optics, Vol. 37, Issue 35, pp. 8247-8253 (1998)

View Full Text Article

Acrobat PDF (676 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photorefractive incoherent-to-coherent optical converter (PICOC) is demonstrated; conversion is accomplished by anisotropic self-diffraction in BaTiO<sub>3</sub>. The setup of the PICOC is easy, and only two writing beams are required. The diffraction efficiency reaches 50%, and the resolution is 22 line pairs (lp)/mm in a typical-size crystal. Further, the resolution reaches 40 lp/mm when a BaTiO<sub>3</sub>:Rh crystal of thickness 1.2 mm is used, and the diffraction efficiency is as high as 51%. The resolution of the PICOC can be increased effectively by reduction of the crystal thickness with no penalty for low diffraction efficiency.

© 1998 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics
(200.0200) Optics in computing : Optics in computing
(200.3050) Optics in computing : Information processing

Ching-Cherng Sun, Bor Wang, and Jenq-Yang Chang, "Photorefractive Incoherent-to-Coherent Optical Converter Based on Anisotropic Self-Diffraction in BaTiO3," Appl. Opt. 37, 8247-8253 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J.-P. Huignard and P. Günter, Photorefractive Materials and Their Applications. I. Fundamental Phenomena (Springer-Verlag, New York, 1988).
  2. J.-P. Huignard and P. Günter, Photorefractive Materials and Their Applications. II. Applications (Springer-Verlag, New York, 1989).
  3. A. Marrakchi, A. R. Tanguay, Jr., J. Yu, and D. Psaltis, “Physical characterization of the photorefractive incoherent-to-coherent optical converter,” Opt. Eng. 24, 124–131 (1985).
  4. A. A. Kamshilin and M. Petrov, “Holographic image conversion in a Bi12SiO2 crystal,” Sov. Tech. Phys. Lett. 6, 144–145 (1980).
  5. Y. Shi, D. Psaltis, A. Marrakchi, and A. R. Tanguay, Jr., “Photorefractive incoherent-to-coherent optical converter,” Appl. Opt. 22, 3665–3367 (1983).
  6. E. Voit and P. Günter, “Photorefractive spatial light modulation by anisotropic self-diffraction in KNbO3 crystals,” Opt. Lett. 12, 769–771 (1987).
  7. E. J. Sharp, G. L. Wood, W. W. Clark III, G. J. Salamo, and R. R. Neurgaonkar, “Incoherent-to-coherent conversion using a photorefractive self-pumped phase conjugator,” Opt. Lett. 17, 207–209 (1992).
  8. J. Ma, L. Liu, S. Wu, Z. Wang, and L. Xu, “Grating-encoded multichannel photorefractive incoherent-to-coherent optical conversion,” Opt. Lett. 14, 572–574 (1989).
  9. C. C. Sun, M. W. Chang and K. Y. Hsu, “Contrast-reversible photorefractive incoherent-to-coherent optical converter using anisotropic strong volume hologram,” Opt. Lett. 18, 655–657 (1993).
  10. H. Y. Lee, H. F. Yau, and S. W. Wang, “Photorefractive color converter making use of beam fanning effect,” Jap. J. Appl. Phys. 33, L116–L118 (1994).
  11. J. Zhang, H. Wang, S. Yoshikado, and T. Aruga, “Incoherent-to-coherent conversion by use of the photorefractive fanning effect,” Opt. Lett. 22, 1612–1614 (1997).
  12. P. Amrhein and P. Günter, “Resolution limit for anisotropic Bragg diffraction from finite holographic gratings,” Opt. Lett. 19, 1173–1175 (1990).
  13. M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, “High photorefractive sensitivity in an n-type 45°-cut BaTiO3 crystal,” Opt. Lett. 17, 103–105 (1992).
  14. C. C. Sun, M. W. Chang, and K. Y. Hsu, “Anisotropic diffraction of strong volume in BaTiO3,” Opt. Commun. 119, 597–603 (1995).
  15. For example, see C. C. Sun, R. H. Tsou, J. Y. Chang, and M. W. Chang, “Real-time photorefractive interferometer of dynamic phase perturbation by self-interference in LiNbO3,” Appl. Opt. 36, 3581–3585 (1997).
  16. Ref. 2, p. 37.
  17. N. V. Kukhtarev, E. Krazig, H. C. Kulich, and R. A. Rupp, “Anisotropic self-diffraction in BaTiO3,” Appl. Phys. B 35, 17–21 (1984).
  18. D. A. Temple and C. Warde, “Anisotropic scattering in photorefractive crystals,” J. Opt. Soc. Am. B 3, 337–341 (1986).
  19. C. C. Sun, M. W. Chang, and K. Y. Hsu, “Matrix-matrix multiplication by using anisotropic self-diffraction in BaTiO3,” Appl. Opt. 33, 4501–4507 (1994).
  20. R. M. Pierce and R. S. Cudney, “Photorefractive coupling between orthogonally polarized light beams in barium titanate,” Opt. Lett. 11, 784–786 (1992).
  21. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  22. S. H. Wemple, M. DiDomenico, Jr., and I. Camilibel, “Dielectric and optical properties of melt-grown BaTiO3,” J. Phys. Chem. Solids 29, 1797–1806 (1968).
  23. G. C. Vaiiel and M. B. Klein, “Optimal properties of photorefractive materials of optical data processing,” Opt. Eng. 22, 704–711 (1983).
  24. The measurement of the focal length is demonstrated in C. C. Sun, R. H. Tsou, W. Shen, H. H. Chang, and M. W. Chang, “Shearing interferometer by using Kitty self-pumped phase conjugate mirror,” Appl. Opt. 35, 1815–1819 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited