Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Diode-laser absorption measurements of CO2 near 2.0 μm at elevated temperatures

Not Accessible

Your library or personal account may give you access

Abstract

A diode-laser sensor system based on absorption spectroscopy techniques has been developed for nonintrusive measurements of CO2 in high-temperature environments. Survey spectra of the CO2 (20°1,04°1)I–00°0 and (20°1,04°1)II–00°0 bands between 1.966 and 2.035 μm (4915–5085 cm-1) were recorded at temperatures between 296 and 1425 K in a heated static cell and compared with calculated spectra (by using the HITRAN 96/HITEMP database) to find candidate transitions for CO2 detection. High-resolution measurements of the CO2 R(56) line shape [(20°1,04°1)II–00°0 band] were used to determine the transition line strength, the self-broadening half-width, and the coefficient of temperature dependence of the self-broadening half-width. The results represent what are believed to be the first measurements of CO2 absorption near 2.0 μm with room-temperature diode lasers. Potential applications of the diode-laser sensor system include in situ combustion measurements and environmental monitoring.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Tunable diode-laser absorption measurements of methane at elevated temperatures

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, and J. Segall
Appl. Opt. 35(21) 4026-4032 (1996)

In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 µm

Michael E. Webber, Suhong Kim, Scott T. Sanders, Douglas S. Baer, Ronald K. Hanson, and Yuji Ikeda
Appl. Opt. 40(6) 821-828 (2001)

Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows

Radu M. Mihalcea, Douglas S. Baer, and Ronald K. Hanson
Appl. Opt. 36(33) 8745-8752 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved