OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 36 — Dec. 20, 1998
  • pp: 8438–8447

Algebraic Determination of the Principal Refractive Indices and Axes in the Electro-Optic Effect

Mark J. Gunning and Roger E. Raab  »View Author Affiliations

Applied Optics, Vol. 37, Issue 36, pp. 8438-8447 (1998)

View Full Text Article

Acrobat PDF (251 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A systematic algebraic approach is presented as a preferred alternative to an iterative numerical method for deriving expressions for the principal refractive indices and dielectric axes of a nonmagnetic crystal in a uniform electric field. This approach is applicable for an arbitrary field and for any symmetry point group. The results, to the chosen order in the field, are expressed algebraically in terms of measurable crystal tensors. Illustrations are given of the linear electro-optic effect for the point groups 4̄3m, 3m, 4̄2m, and 1 and of the quadratic effect in 4̄2m. The latter serves to highlight a shortcoming in the numerical approach. Comparisons are drawn with numerical results published previously.

© 1998 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(260.1180) Physical optics : Crystal optics
(350.5500) Other areas of optics : Propagation

Mark J. Gunning and Roger E. Raab, "Algebraic Determination of the Principal Refractive Indices and Axes in the Electro-Optic Effect," Appl. Opt. 37, 8438-8447 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. I. P. Kaminow and E. H. Turner, “Electrooptic light modulators,” Appl. Opt. 5, 1612–1628 (1966).
  2. S. Namba, “Electrooptical effect of zincblende,” J. Opt. Soc. Am. 51, 76–79 (1961).
  3. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  4. M. J. Gunning and R. E. Raab, “Systematic eigenvalue approach to crystal optics: an analytic alternative to the geometric ellipsoid model,” J. Opt. Soc. Am. A 15, 2199–2207 (1998).
  5. D. F. Nelson, “General solution of the electro-optic effect,” J. Opt. Soc. Am. 65, 1144–1151 (1975).
  6. K.-H. Hellwege and A. M. Hellwege, eds., Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptic Constants, and Nonlinear Dielectric Susceptibilities of Crystals, Vol. XI, Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1979).
  7. T. A. Maldonado and T. K. Gaylord, “Electrooptic effect calculations: simplified procedure for arbitrary cases,” Appl. Opt. 27, 5051–5066 (1988).
  8. A. D. Buckingham and M. B. Dunn, “Optical activity of oriented molecules,” J. Chem. Soc. A, 1988–1991 (1971).
  9. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge U. Press, Cambridge, UK, 1982).
  10. R. E. Raab and J. H. Cloete, “An eigenvalue theory of circular birefringence and dichroism in a non-magnetic chiral medium,” J. Electromagn. Waves Appl. 8, 1073–1089 (1994).
  11. M. J. Gunning and R. E. Raab, “Electric-field-induced optical activity in nonmagnetic crystals,” J. Opt. Soc. Am. B 14, 1–7 (1997).
  12. C. Graham and R. E. Raab, “Eigenvector approach to the evaluation of the Jones N matrices of nonabsorbing crystalline media,” J. Opt. Soc. Am. A 11, 2137–2144 (1994).
  13. A. D. Buckingham, “Permanent and induced molecular moments and long-range intermolecular forces,” Adv. Chem. Phys. 12, 107–142 (1967).
  14. E. B. Graham and R. E. Raab, “Non-reciprocal optical rotation in cubic antiferromagnetics,” Philos. Mag. B 64, 267–274 (1991).
  15. J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, UK, 1985).
  16. A. D. Buckingham and J. A. Pople, “Theoretical studies of the Kerr effect I: deviations from a linear polarization law,” Proc. Phys. Soc. London Sect. A 68, 905–909 (1955).
  17. A. D. Buckingham and H. C. Longuet-Higgins, “The quadrupole moments of dipolar molecules,” Mol. Phys. 14, 63–72 (1968).
  18. R. R. Birss, Symmetry and Magnetism, 2nd ed. (North-Holland, Amsterdam, 1966).
  19. J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with strong electro-optic effect: rubidium hydrogen selenate (RbHSeO4),” Appl. Phys. Lett. 64, 1920–1922 (1994).
  20. M. V. Klein, Optics (Wiley, New York, 1970).
  21. G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP and KD*P for nonlinear devices,” IEEE J. Quantum Electron. QE-18, 143–145 (1982).
  22. W. Kucharczyk, M. J. Gunning, R. E. Raab, and C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
  23. P. Górski, D. Mik, W. Kucharczyk, and R. E. Raab, “On the quadratic electro-optic effect in KDP,” Physica B 193, 17–24 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited