OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 36 — Dec. 20, 1998
  • pp: 8460–8476

Development of a tunable, narrow-linewidth, cw 2.066-μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O

Thomas M. Taczak and Dennis K. Killinger  »View Author Affiliations

Applied Optics, Vol. 37, Issue 36, pp. 8460-8476 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A smoothly tunable, narrow-linewidth, cw, 32-mW, 2.066-μm Ho:YLF laser was constructed and used for the first time in preliminary spectroscopic measurements of atmospheric CO2 and H2O. The laser was constructed with a 4.5-mm-long, TE-cooled, codoped 5% Tm and 0.5% Ho yttrium lithium fluoride crystal (cut at Brewster’s angle) pumped by an Ar+-pumped 500-mW Ti:sapphire laser operating at 792 nm. Intracavity etalons were used to reduce the laser linewidth to approximately 0.025 cm-1 (0.75 GHz), and the laser wavelength was continuously and smoothly tunable over approximately 6 cm-1 (180 GHz). The Ho:YLF laser was used to perform spectroscopic measurements on molecular CO2 in a laboratory absorption cell and to measure the concentration of CO2 and water vapor in the atmosphere with an initial accuracy of approximately 5–10%. The measurement uncertainty was found to be due to several noise sources, including the effect of asymmetric intensity of the laser modes within the laser linewidth, fluctuations caused by atmospheric turbulence and laser beam/target movement, and background spectral shifts.

© 1998 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3600) Lasers and laser optics : Lasers, tunable
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3420) Remote sensing and sensors : Laser sensors
(280.3640) Remote sensing and sensors : Lidar
(300.6360) Spectroscopy : Spectroscopy, laser

Original Manuscript: February 11, 1998
Revised Manuscript: September 3, 1998
Published: December 20, 1998

Thomas M. Taczak and Dennis K. Killinger, "Development of a tunable, narrow-linewidth, cw 2.066-μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O," Appl. Opt. 37, 8460-8476 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Storm, “Holmium YLF amplifier performance and the prospects for multi-joule energies using diode-laser pumping,” IEEE J. Quantum Electron. 29, 440–451 (1993). [CrossRef]
  2. E. P. Chicklis, C. S. Naiman, R. C. Folweiler, D. R. Gabbe, H. P. Jenssen, A. Linz, “High efficiency room-temperature 2.06 μm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119–121 (1971). [CrossRef]
  3. American National Standard for Safe Use of Lasers. ANSI Z136.1-1993 (Laser Institute of America, Orlando, Fla., 1993).
  4. G. Armagan, A. M. Buoncristiani, A. T. Inge, B. Di Bartolo, “Comparison of spectroscopic properties of Tm and Ho in YAG and YLF crystals,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 222–226.
  5. R. A. Horne, The Chemistry of Our Environment (Wiley, New York, 1978), p. 651.
  6. C. Keeling, R. Bacastow, A. Carter, S. Piper, T. Whorf, M. Heimann, W. Mook, H. Roeloffzen, “A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observed data,” in Aspects of Climate Variability in the Pacific and Western Americas, Vol. 55 of Geophysical Monographs (American Geophysical Union, Washington, D.C., 1989), pp. 165–236. [CrossRef]
  7. L. S. Rothman, “Infrared energy levels and intensities of carbon dioxide: Part 3,” Appl. Opt. 25, 1795–1816 (1986). [CrossRef] [PubMed]
  8. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992). [CrossRef]
  9. S. W. Henderson, C. P. Hale, “Tunable single-longitudinal mode diode laser pumped Tm:Ho:YAG laser,” Appl. Opt. 29, 1716–1718 (1990). [CrossRef] [PubMed]
  10. K. O. White, W. R. Watkins, S. A. Schleusener, “Holmium 2.06 mm laser spectral characteristics and absorption by CO2 gas,” Appl. Opt. 14, 16–18 (1975). [CrossRef] [PubMed]
  11. P. S. Gillespie, R. L. Armstrong, K. O. White, “Spectral characteristics and atmospheric CO2 absorption of the Ho:YLF laser at 2.05 μm,” Appl. Opt. 15, 865–866 (1976). [CrossRef] [PubMed]
  12. A. Erbil, H. P. Jenssen, “Tunable Ho3+:YLF laser at 2.06 μm,” Appl. Opt. 19, 1729–1730 (1980). [CrossRef] [PubMed]
  13. A. Di Lieto, A. Neri, P. Minguzzi, F. Pozzi, M. Tonelli, H. P. Jenssen, “Characterization and spectroscopic applications of a high-efficiency Ho:YLF laser,” in Advanced Solid-State Lasers, Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 150–154.
  14. H. Hemmati, “2.07-μm cw diode-laser-pumped Tm, Ho:YLiF4 room-temperature laser,” Opt. Lett. 14, 435–437 (1989). [CrossRef] [PubMed]
  15. B. T. McGuckin, R. T. Menzies, “Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 μm,” IEEE J. Quantum Electron. 28, 1025–1028 (1992). [CrossRef]
  16. B. T. McGuckin, R. T. Menzies, C. Esproles, “Tunable frequency stabilized diode-laser-pumped Tm, Ho:YLiF4 laser at room temperature,” Appl. Opt. 23, 2082–2084 (1993). [CrossRef]
  17. R. T. Menzies, H. Hemmati, C. Esproles, “Tunable Th,Ho:YLF laser for wideband Doppler compensation in heterodyne optical receivers, in Laser Radar Technology and Applications III, G. W. Kamermon, ed., Proc. SPIE3380, Paper 3380-15 (1998).
  18. G. J. Koch, J. P. Deyst, M. E. Storm, “Single-frequency lasing of monolithic Ho,Tm:YLF,” Opt. Lett. 18, 1235–1237 (1993).
  19. T. M. Taczak, “Development of a tunable, narrow linewidth 2.066 μm Ho,Tm:YLF laser for open-path remote sensing of atmospheric CO2 and water vapor,” Ph.D. dissertation (Department of Physics, University of South Florida, Tampa, Fla., 1997).
  20. D. K. Killinger, N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37–45 (1987). [CrossRef] [PubMed]
  21. R. C. Weast, M. J. Astle, W. H. Beyer, eds., CRC Handbook of Chemistry and Physics, 64th ed. (Boca Raton, Fla., 1984), p. 338.
  22. K. Carder, Department of Marine Science, University of South Florida, Tampa, Fla. (personal communication, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited