OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 7 — Mar. 1, 1998
  • pp: 1205–1212

Sellmeier coefficients for the birefringence and refractive indices of ZnGeP2 nonlinear crystal at different temperatures

Gorachand Ghosh  »View Author Affiliations

Applied Optics, Vol. 37, Issue 7, pp. 1205-1212 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (207 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Birefringence (B f ), refractive indices, and their temperature derivatives (dB f /dT) determine the temperature characteristics of nonlinear-optical laser devices. The birefringences at different temperatures are analyzed critically by use of a new physically meaningful Sellmeier equation for what is to the author’s knowledge the first time the birefringences at different operating temperature from 14 to 500 K and wavelength for ZnGeP2 nonlinear crystal have been found. This equation is based on the average electronic absorption gap in the UV region and the lattice absorption gap at the IR region. In this model the fitting accuracy is better than the experimental accuracy of ±0.0001 at different temperatures. The refractive indices are estimated at different temperatures from the room-temperature values, the thermo-optic coefficients, and the smoothed values of birefringence. The Sellmeier coefficients for refractive indices that are used to characterize the currently available nonlinear-optical devices satisfactorily are then evaluated. These optical constants are essential in characterizing the parametric short-pulse generation in the mid-IR region.

© 1998 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(260.1440) Physical optics : Birefringence
(260.2030) Physical optics : Dispersion

Original Manuscript: August 20, 1997
Revised Manuscript: October 27, 1997
Published: March 1, 1998

Gorachand Ghosh, "Sellmeier coefficients for the birefringence and refractive indices of ZnGeP2 nonlinear crystal at different temperatures," Appl. Opt. 37, 1205-1212 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971). [CrossRef]
  2. G. D. Boyd, W. B. Gandrud, E. Buehler, “Phase-matched upconversion of 10.6-μm radiation in ZnGeP2,” Appl. Phys. Lett. 18, 446–448 (1971). [CrossRef]
  3. G. D. Boyd, E. Buehler, F. G. Storz, J. H. Wernick, “Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors,” IEEE J. Quantum Electron. QE-8, 419–426 (1972). [CrossRef]
  4. G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972). [CrossRef]
  5. G. C. Bhar, “Refractive index interpolation in phase matching,” Appl. Opt. 15, 305–307 (1976). [CrossRef]
  6. P. G. Schunemann, “Growth and properties of mid-IR nonlinear optical materials,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1997), paper CThG5.
  7. D. W. Fischer, M. C. Ohmer, P. G. Schunemann, T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995). [CrossRef]
  8. D. W. Fischer, M. C. Ohmer, “Temperature dependence of ZnGeP2 birefringence using polarized light interference,” J. Appl. Phys. 81, 425–431 (1997); Wright Laboratory, Materials Directorate, 3005 P Street, Suite 6, Wright-Patterson AFB, Ohio 45433-7707 (personal communication, 16July1997).
  9. G. C. Bhar, G. Ghosh, “Temperature-dependent Sellmeier coefficients and coherence lengths for some chalcopyrite crystals,” J. Opt. Soc. Am. 69, 730–733 (1979). [CrossRef]
  10. G. C. Bhar, G. Ghosh, “Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2,” IEEE J. Quantum Electron. QE-16, 838–843 (1980). [CrossRef]
  11. G. C. Bhar, G. Ghosh, “Dispersion of thermooptic coefficients in nonlinear crystals,” Appl. Opt. 19, 1029–1031 (1980). [CrossRef] [PubMed]
  12. G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987). [CrossRef]
  13. G. C. Bhar, S. Das, U. Chatterjee, K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989). [CrossRef]
  14. Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, G. S. Kheml’nitskii , “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
  15. Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
  16. Yu. M. Andreev, S. D. Velikanov, A. S. Yerutin, A. F. Zapolskii, D. V. Konkin, S. N. Mishkin, S. V. Smirnov, Yu. N. Frolov, V. V. Shchurov , “Second harmonic generation from DF laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 22, 1035 (1992).
  17. K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, L. A. Kulevskii, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2 crystal in the 5–6.3-μm range,” Sov. J. Quantum Electron. 17, 1159–1161 (1987). [CrossRef]
  18. K. L. Vodopyanov, V. G. Voevodin, “Type I and II ZnGeP2 travelling-wave optical parametric generator tunable between 3.9 and 10 μm,” Opt. Commun. 117, 277–282 (1995). [CrossRef]
  19. K. Kato, “Second-harmonic and sum-frequency generation in ZnGeP2,” Appl. Opt. 36, 2506–2510 (1997) and references cited therein. [CrossRef] [PubMed]
  20. H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hegde, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993). [CrossRef]
  21. Landolt-Bornstein, New Series, Group III, Vol. 17, Semiconductors (Springer-Verlag, Berlin, 1985).
  22. G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–197 (1995);“Thermo-optic coefficients of LiNbO3, LiIO3 and LiTaO3 nonlinear crystals,” Opt. Lett. 19, 1391–1393 (1994). [CrossRef]
  23. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, San Diego, Calif., 1997).
  24. S. V. Ivanova, V. S. Gorelik, B. A. Strukov, “Raman spectra and dielectric properties of lithium niobate and lithium tantalate,” Ferroelectrics 21, 563–564 (1978). [CrossRef]
  25. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967). [CrossRef]
  26. M. Quintero, J. Gonzalez, J. C. Wooley, “Optical energy-gap variation and deformation potentials in CuInTe2,” J. Appl. Phys. 70, 1451–1454 (1991). [CrossRef]
  27. G. Ghosh, “Temperature dispersion of refractive indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994). [CrossRef]
  28. P. D. Mason, D. J. Jackson, E. K. Gorton, “CO2 laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited