OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 8 — Mar. 10, 1998
  • pp: 1407–1416

Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals

Nicholas Madamopoulos and Nabeel A. Riza  »View Author Affiliations


Applied Optics, Vol. 37, Issue 8, pp. 1407-1416 (1998)
http://dx.doi.org/10.1364/AO.37.001407


View Full Text Article

Enhanced HTML    Acrobat PDF (1134 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A 3-bit binary photonic delay line is demonstrated at 1 GHz by use of a directly modulated semiconductor laser and remote interconnection fiber optics. Three types of free-space delay-bit geometries are tested for 5.69-ns, 1.67-ns, and 8.8-ps designed delay bits. This is the first time, to our knowledge, that a photonic delay line is demonstrated with ferroelectric liquid-crystal optical onoff devices for optical path switching and active polarization noise filtering. Three-dimensional imaging optics and antireflection-coated optics (for all but five components) are used successfully to minimize photonic delay-line insertion losses and interchannel cross talk. The 3-bit system is fully characterized for measured and designed performance.

© 1998 Optical Society of America

OCIS Codes
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(140.3300) Lasers and laser optics : Laser beam shaping
(160.2260) Materials : Ferroelectrics
(160.3710) Materials : Liquid crystals
(260.5430) Physical optics : Polarization
(280.5110) Remote sensing and sensors : Phased-array radar
(350.4010) Other areas of optics : Microwaves

History
Original Manuscript: May 12, 1997
Revised Manuscript: October 29, 1997
Published: March 10, 1998

Citation
Nicholas Madamopoulos and Nabeel A. Riza, "Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals," Appl. Opt. 37, 1407-1416 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-8-1407


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. A. Riza, ed., Selected Papers on Photonic Control of Phased Array Antennas, Vol. MS136 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., 1997).
  2. S. J. Lin, R. S. Boughton, “Acousto-optic multichannel programmable true time delay lines,” in Optical Technology for Microwave Applications IV, S.-K. Yao, ed., Proc. SPIE1102, 162–173 (1989). [CrossRef]
  3. D. A. Cohen, Y. Chang, A. F. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1658 (1996). [CrossRef]
  4. L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photon. Technol. Lett. 8, 160–162 (1996). [CrossRef]
  5. R. A. Minasian, K. E. Alameh, N. Fourikis, “Wavelength-multiplexed photonic beam-former architecture for microwave phased arrays,” Microwave Opt. Technol. Lett. 10, 84–88 (1995). [CrossRef]
  6. D. Dolfi, F. Michel-Gabriel, S. Bonn, J.-P. Huignard, “Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16, 255–257 (1991);D. Dolfi, P. Joffre, J. Antoine, J.-P. Huignard, D. Philippet, P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35, 5293–5600 (1996). [CrossRef] [PubMed]
  7. H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995). [CrossRef]
  8. A. Goutzoulis, K. Davies, J. Zomp, P. Hrycak, A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased-array antennas,” Appl. Opt. 33, 8173–8185 (1994). [CrossRef] [PubMed]
  9. R. Soref, “Optical dispersion technique for time-delay beam steering,” Appl. Opt. 31, 7395–7397 (1992). [CrossRef] [PubMed]
  10. R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993). [CrossRef]
  11. J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechesberg, “Photonic wideband array antennas,” IEEE Trans. Ant. Propag. 43, 966–982 (1995). [CrossRef]
  12. N. A. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightwave Technol. 12, 1440–1447 (1994). [CrossRef]
  13. N. A. Riza, N. Madamopoulos, “Phased-array antenna, maximum-compression, reversible photonic beam former with ternary designs and multiple wavelengths,” Appl. Opt. 36, 983–996 (1997). [CrossRef] [PubMed]
  14. N. A. Riza, N. Madamopoulos, “Photonic time delay beamforming architectures using polarization switching arrays,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 186–197 (1996). [CrossRef]
  15. N. A. Riza, “High-optical-isolation low-loss moderate-switching-speed nematic liquid-crystal optical switch,” Opt. Lett. 19, 1780–1782 (1994). [CrossRef] [PubMed]
  16. N. A. Riza, “25-Channel nematic liquid crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995). [CrossRef]
  17. N. A. Riza, N. Madamopoulos, “High signal-to-noise ratio birefringence-compensated optical delay line based on a noise-reduction scheme,” Opt. Lett. 20, 2351–2353 (1995). [CrossRef] [PubMed]
  18. N. A. Riza, N. Madamopoulos, “Microwave band demonstration of a reflective geometry fiber and free-space binary photonic delay line,” Microwave Guided Wave Lett. 7, 103–105 (1997). [CrossRef]
  19. J. Adam, “Pinning defense hopes on AEGIS,” IEEE Spectrum 25(6), 24–27 (1988). [CrossRef]
  20. N. A. Riza, N. Madamopoulos, “Phased array radar control using ferroelectric liquid crystal devices,” in LEOS ’96 Conference Proceedings: Ninth Annual Meeting (IEEE Lasers and Electro-Optics Society, Boston, Mass., 1996), Vol. 2, paper WG2, pp. 52–53.
  21. N. A. Riza, N. Madamopoulos, “Characterization of a ferroelectric liquid crystal based time delay unit for phased array antenna applications,” J. Lightwave Technol. 15, 1088–1094 (1997). [CrossRef]
  22. N. Madamopoulos, N. A. Riza, “Switched three-dimensional photonic delay line using directly modulated semiconductor lasers for microwave radar processing,” in Radar Processing, Technology and Applications, W. J. Miceli, ed., Proc. SPIE2754, 266–275 (1996). [CrossRef]
  23. Displaytech Shutters User’s Manual, Version 1.1 (Displaytech, Inc., Boulder, Colo., February1994).
  24. Selfoc Product Guide [Nippon Sheet Glass Co. (NSG) America, Somerset, N.J., 1995].
  25. J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996). [CrossRef]
  26. QLINK1-XXX series , Lasertron 1996/97 Product Guide (Lasertron, Inc., Bedford, Mass., 1996).
  27. G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995). [CrossRef]
  28. M. C. DeJule, T. L. Credelle, N. A. Riza, D. E. Castleberry, “Compact polarization dependent optical switching units,” U.S. patent5,345,321 (6September1994).
  29. X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994). [CrossRef]
  30. N. A. Riza, “Advances in three-dimensional reversible photonic modules for phased-array control,” in Photonics and Radio Frequency, B. M. Hendrickson, ed., Proc. SPIE2844, 274–283 (1996). [CrossRef]
  31. N. A. Riza, S. Yuan, “Robust packaging of photonic rf modules using ultra-thin adaptive optical interconnect devices,” in Optical Technology for Microwave Applications VIII, Proc. SPIE3160, 170–177 (1997). [CrossRef]
  32. M. R. Feldman, A. E. Erlich, “Diffractive optics improve product design,” Photon. Spectra 29, 115–120 (1995).
  33. Diffractive pattern generators data sheet (Digital Optics Corp., Charlotte, N.C., 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited