OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 9 — Mar. 20, 1998
  • pp: 1477–1485

Corona-producing ice clouds: a case study of a cold mid-latitude cirrus layer

Kenneth Sassen, Gerald G. Mace, John Hallett, and Michael R. Poellot  »View Author Affiliations

Applied Optics, Vol. 37, Issue 9, pp. 1477-1485 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (2041 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high (14.0-km), cold (-71.0 °C) cirrus cloud was studied by ground-based polarization lidar and millimeter radar and aircraft probes on the night of 19 April 1994 from the Cloud and Radiation Testbed site in northern Oklahoma. A rare cirrus cloud lunar corona was generated by this 1–2-km-deep cloud, thus providing an opportunity to measure the composition in situ, which had previously been assumed only on the basis of lidar depolarization data and simple diffraction theory for spheres. In this case, corona ring analysis indicated an effective particle diameter of ∼22 μm. A variety of in situ data corroborates the approximate ice-particle size derived from the passive retrieval method, especially near the cloud top, where impacted cloud samples show simple solid crystals. The homogeneous freezing of sulfuric acid droplets of stratospheric origin is assumed to be the dominant ice-particle nucleation mode acting in corona-producing cirrus clouds. It is speculated that this process results in a previously unrecognized mode of acid-contaminated ice-particle growth and that such small-particle cold cirrus clouds are potentially a radiatively distinct type of cloud.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.2940) Atmospheric and oceanic optics : Ice crystal phenomena
(290.0290) Scattering : Scattering

Original Manuscript: July 8, 1997
Revised Manuscript: November 7, 1997
Published: March 20, 1998

Kenneth Sassen, Gerald G. Mace, John Hallett, and Michael R. Poellot, "Corona-producing ice clouds: a case study of a cold mid-latitude cirrus layer," Appl. Opt. 37, 1477-1485 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Sassen, “Corona-producing cirrus cloud properties derived from polarization lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991). [CrossRef] [PubMed]
  2. J. A. Lock, L. Yang, “Mie theory of the corona,” Appl. Opt. 30, 3408–3414 (1991). [CrossRef] [PubMed]
  3. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989). [CrossRef]
  4. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991). [CrossRef]
  5. K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995). [CrossRef]
  6. G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) program: programmatic background and design of the cloud and radiation testbed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994). [CrossRef]
  7. K. Sassen, “Advances in polarization diversity lidar for cloud remote sensing,” Proc. IEEE 82, 1907–1914 (1994). [CrossRef]
  8. E. E. Clothiaux, M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, W. J. Syrett, “An evaluation of a 94 GHz radar for remote sensing of cloud properties,” J. Atmos. Ocean. Technol. 12, 201–229 (1995). [CrossRef]
  9. W. P. Arnott, Y. Y. Dong, J. Hallett, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994). [CrossRef]
  10. D. Baumgardner, A. Korolev, “Airspeed corrections for optical array probe sample volumes,” J. Atmos. Ocean. Technol. 14, 1224–1229 (1997). [CrossRef]
  11. J.-F. Gayet, G. Febvre, H. Larson, “The reliability of the PMS FSSP in the presence of small ice crystals,” J. Atmos. Ocean. Technol. 13, 1300–1310 (1996). [CrossRef]
  12. K. Sassen, “Contrail-cirrus and their potential for regional climate change,” Bull. Am. Meteorol. Soc. 78, 1885–1903.
  13. K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 30, 4590–4601 (1994). [CrossRef]
  14. C. E. Junge, C. W. Chagnon, J. E. Manson, “Stratospheric aerosols,” J. Meteorol. 18, 81–110 (1961). [CrossRef]
  15. P. Hamill, E. J. Jensen, P. B. Russell, J. J. Bauman, “The life cycle of stratospheric aerosol particles,” Bull. Am. Meteorol. Soc. 78, 1395–1410.
  16. J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentrations in midlatitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited