OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 1 — Jan. 1, 1999
  • pp: 91–95

Polarization-Dependent Interference Effects in Grazing-Angle Fourier Transform Infrared Reflection-Absorption Spectroscopy to Determine the Thickness of Water-Ice Films

Marin S. Robinson, Govind Mallick, Jennifer L. Spillman, Priscilla A. Carreon, and Stephanie Shalloo  »View Author Affiliations


Applied Optics, Vol. 38, Issue 1, pp. 91-95 (1999)
http://dx.doi.org/10.1364/AO.38.000091


View Full Text Article

Acrobat PDF (109 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Interference fringes appeared between 6000 and 4095 cm−1 in the infrared spectra of thin water-ice films vapor deposited on an aluminum substrate and probed with grazing-angle Fourier transform infrared reflection–absorption spectroscopy. At grazing incidence the position of the fringe under perpendicularly polarized light (Eς) is 180° out of phase with the position of the fringe under parallel polarized light (Eπ). This shift in fringe position with polarization offers a convenient way to estimate the thickness (∓5%) of water-ice films between 0.5 and 1.4 μm.

© 1999 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(260.3160) Physical optics : Interference
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(310.6860) Thin films : Thin films, optical properties

Citation
Marin S. Robinson, Govind Mallick, Jennifer L. Spillman, Priscilla A. Carreon, and Stephanie Shalloo, "Polarization-Dependent Interference Effects in Grazing-Angle Fourier Transform Infrared Reflection-Absorption Spectroscopy to Determine the Thickness of Water-Ice Films," Appl. Opt. 38, 91-95 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-1-91


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. E. Schaff and J. T. Roberts, “Structure sensitivity in the surface chemistry of ice: acetone adsorption on amorphous and crystalline ice films,” J. Phys. Chem. 98, 6900–6902 (1994).
  2. M. A. Zondlo, T. B. Onasch, M. S. Warshawsky, M. A. Tolbert, G. Mallick, P. Arentz, and M. S. Robinson, “Experimental studies of vapor-deposited water-ice films using grazing-angle FTIR-reflection absorption spectroscopy,” J. Phys. Chem. B 101, 10887–10895 (1997).
  3. B. W. Callen, K. Griffiths, and P. R. Norton, “Observation of free hydroxyl groups on the surface of ultra thin ice layers on Ni(110),” Surf. Sci. Lett. 261, L41–L48 (1992).
  4. J. D. Graham and J. T. Roberts, “Interaction of hydrogen chloride with an ultra thin ice film: observation of adsorbed and absorbed states,” J. Phys. Chem. 98, 5974–5983 (1994).
  5. A. B. Horn, T. G. Koch, M. A. Chesters, M. R. S. McCoustra, and J. R. Sodeau, “A low-temperature infrared study of the reactions of the stratospheric NOy reservoir species dinitrogen pentoxide with water ice, 80–160 K,” J. Phys. Chem. 98, 946–951 (1994).
  6. M. R. S. McCoustra and A. B. Horn, “Towards a laboratory strategy for the study of heterogeneous catalysis in stratospheric ozone depletion,” Chem. Soc. Rev. 23, 195–204 (1994).
  7. S. F. Banham, A. B. Horn, T. G. Koch, and J. R. Sodeau, “Ionisation and solvation of stratospherically relevant molecules on ice films,” Faraday Discuss. Chem. Soc. 100, 321–332 (1995).
  8. R. G. Greenler, “Infrared study of adsorbed molecules on metal surfaces by reflection techniques,” J. Chem. Phys. 44, 310–315 (1966).
  9. A. B. Horn, S. F. Banham, and M. R. S. McCoustra, “Optical effects in the IR reflection-absorption spectra of thin water-ice films on metal substrates,” J. Chem. Soc. Faraday Trans. 91, 4005–4008 (1995).
  10. M. V. Klein and T. E. Furtak, Optics (Wiley, New York, 1986), pp. 74–98.
  11. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths Scientific, London, 1955), pp. 46–66.
  12. O. B. Toon, M. A. Tolbert, B. G. Koehler, A. M. Middlebrook, and J. Jordan, “Infrared optical constants of H2O ice, amorphous nitric aid solutions, and nitric acid hydrates,” J. Geophys. Res. 99, 25,631–25, 654 (1994).
  13. D. Y. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic aluminum,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1985), pp. 369–406.
  14. P. W. Wilson, D. Beaglehole, and A. L. DeVries, “Antifreeze glycopeptide adsorption on single crystal ice surfaces using ellipsometry,” Biophys. J. 64, 1878–1884 (1993).
  15. B. S. Berland, D. R. Haynes, K. L. Foster, M. A. Tolbert, S. M. George, and O. B. Toon, “Refractive indices of amorphous and crystalline HNO3/H2O films representative of polar stratospheric clouds,” J. Phys. Chem. 98, 4358–4364 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited