OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 10 — Apr. 1, 1999
  • pp: 2083–2085

Layer thickness fluctuations in optical coatings with non-quarter-wave design

Joseph Lowry, Marshall Thomsen, Ernest R. Behringer, and Zhouling Wu  »View Author Affiliations

Applied Optics, Vol. 38, Issue 10, pp. 2083-2085 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (59 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Previous research on highly reflective multilayer optical coatings has shown that varying the thickness of layers from their traditional quarter-wave values gives the potential for greater damage thresholds without sacrificing the desired optical properties. We numerically investigate the influence of unintended layer thickness fluctuations in these nontraditional designs, concluding that such fluctuations should have minimal effect on the optical properties of the coating. This result makes the prospect of producing nontraditional designs more promising.

© 1999 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(140.3330) Lasers and laser optics : Laser damage
(310.1620) Thin films : Interference coatings
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties

Original Manuscript: November 30, 1998
Published: April 1, 1999

Joseph Lowry, Marshall Thomsen, Ernest R. Behringer, and Zhouling Wu, "Layer thickness fluctuations in optical coatings with non-quarter-wave design," Appl. Opt. 38, 2083-2085 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Thomsen, Z. L. Wu, “Polarizing and reflective coatings based on half-wave layer pairs,” Appl. Opt. 36, 307–313 (1997). [CrossRef] [PubMed]
  2. J. F. DeFord, M. R. Kozlowski, “Modeling of electric-field enhancements at nodular defects in dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE1848, 455–469 (1992).
  3. R. J. Tench, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J Vac. Sci. Technol. A12, 2808–2813 (1994). [CrossRef]
  4. R. J. Tench, M. R. Kozlowski, R. Chow, “Investigation of the microstructure of coatings for high-power lasers by non-optical techniques,” in Optical Interference Coatings, F. Abeleès, ed., Proc. SPIE2253, 596–602 (1994). [CrossRef]
  5. Z. L. Wu, M. Thomsen, P. K. Kuo, Y. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997). [CrossRef]
  6. D. G. Cahill, T. H. Allen, “Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings,” Appl. Phys. Lett. 65, 309–311 (1994). [CrossRef]
  7. Z. L. Wu, P. K. Kuo, L. Wei, S. L. Gu, R. L. Thomas, “Photothermal characterization of optical thin films,” Thin Solid Films 236, 191–198 (1993). [CrossRef]
  8. D. Ristau, J. Ebert, “Development of a thermographic laser calorimeter,” Appl. Opt. 25, 4571–4578 (1986). [CrossRef] [PubMed]
  9. J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gillman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989). [CrossRef]
  10. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (McGraw-Hill, New York, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited