OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 11 — Apr. 10, 1999
  • pp: 2171–2176

Subwavelength-resolvable focused non-Gaussian beam shaped with a binary diffractive optical element

Michael R. Wang and Xu Guang Huang  »View Author Affiliations

Applied Optics, Vol. 38, Issue 11, pp. 2171-2176 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (278 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The diffraction-limited spot size limits the optical disk storage capacity and microscopic resolution. We describe a technique to shape a focused Gaussian beam into a superresolving beam by using a diffractive optical element fabricated by laser-assisted chemical etching. The focused shaped beam has a smaller width and a longer depth of focus than a similarly focused Gaussian beam. Using the diffraction-limited shaped beam along with threshold writing, we achieved a written pit size of less than 0.33 µm at a 695-nm laser wavelength, compared with a 0.7-µm focused Gaussian spot size (full width at e-2 of the peak) with the same focusing lens. The energy conversion efficiency for the beam shaping was ∼81%.

© 1999 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(050.1940) Diffraction and gratings : Diffraction
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1970) Diffraction and gratings : Diffractive optics
(140.3300) Lasers and laser optics : Laser beam shaping
(350.3950) Other areas of optics : Micro-optics

Original Manuscript: September 2, 1998
Revised Manuscript: December 15, 1998
Published: April 10, 1999

Michael R. Wang and Xu Guang Huang, "Subwavelength-resolvable focused non-Gaussian beam shaped with a binary diffractive optical element," Appl. Opt. 38, 2171-2176 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Terao, N. Ota, S. Horigome, M. Ojima, Fundamentals of Optical Memory (Corona, Tokyo, 1990), p. 51.
  2. T. W. McDaniel, P. C. Arnett, “Optical data storage media,” IBM J. Res. Dev. 40, 311–330 (1996). [CrossRef]
  3. S. Hashimoto, A. Maesaka, Y. Ochiai, “Recording on Co/Pt magneto-optical disks using a 488-nm wavelength laser,” J. Appl. Phys. 70, 5133–5135 (1991). [CrossRef]
  4. W. B. Zefer, A. P. J. Jongelis, B. A. J. Jacobs, H. W. V. Kesteren, P. F. Carica, “Magneto-optical recording in Co/Pt multilayer and GdTbFe-based disks at 820, 647 and 458-nm wavelengths,” IEEE Trans. Magn. 28, 2503–2505 (1992). [CrossRef]
  5. K. Tatsuno, M. Takahashi, K. Muraoka, H. Sugiyama, J. Nakamura, T. Andou, T. Miyai, “High storage density optical recording with a stable micro green second harmonic generation laser consisting of Nd:YVO4 and KTP,” Jpn. J. Appl. Phys. 1 31, 601–604 (1992). [CrossRef]
  6. I. Ichimura, Y. Sabi, Y. Takeshita, A. Fukumoto, M. Kaneko, H. Owa, “High density magneto-optical recording with a second-harmonic generation green laser,” Jpn. J. Appl. Phys. 1 32, 5312–5316 (1993). [CrossRef]
  7. S. M. Mansfield, W. R. Studenmund, G. S. Kino, K. Osato, “High-numerical-aperture lens system for optical storage,” Opt. Lett. 18, 305–307 (1993). [CrossRef]
  8. B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996). [CrossRef]
  9. K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 1 36, 456–459 (1997). [CrossRef]
  10. I. Ichimura, S. Hayashi, G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 4339–4348 (1997). [CrossRef] [PubMed]
  11. D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984). [CrossRef]
  12. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992). [CrossRef]
  13. Y. Y. Lu, D. P. Tsai, W. R. Guo, S.-C. Chen, J. R. Liu, H. Ping, D. Shieh, “Ultrahigh-density optical recording using a scanning near-field optical microscope,” in Miniturized Systems with Micro-optics and Micromechanics III, M. Motamedi, R. Goering, eds., Proc. SPIE3276, 2444–2448 (1998).
  14. K. Goto, “Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 1 37, 2274–2278 (1998). [CrossRef]
  15. G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426–435 (1952). [CrossRef]
  16. I. J. Cox, C. J. R. Sheppard, T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. 72, 1287–1291 (1982). [CrossRef]
  17. D. G. Crowe, “Increasing the bit packing density in diffraction limited optical disk storage systems,” Appl. Opt. 23, 378–379 (1984). [CrossRef] [PubMed]
  18. Z. S. Hegedus, “Annular pupil arrays—applications to confocal scanning,” Opt. Acta 32, 815–826 (1985). [CrossRef]
  19. Y. Yamanaka, Y. Hirose, H. Fujii, K. Kubota, “High density recording by superresolution in an optical disk memory system,” Appl. Opt. 29, 3046–3051 (1990). [CrossRef] [PubMed]
  20. T. Tanabe, “Superresolution readout system with electrical equalization for optical disks,” Appl. Opt. 34, 6769–6774 (1995). [CrossRef] [PubMed]
  21. H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys. 31, 557–567 (1992). [CrossRef]
  22. H. Ando, T. Yokota, K. Tanoue, “Optical head with annular phase-shifting apodizer,” Jpn. J. Appl. Phys. 32, 5269–5276 (1993). [CrossRef]
  23. T. R. M. Sales, G. M. Morris, “Diffractive superresolution elements,” J. Opt. Soc. Am. A 14, 1637–1646 (1997). [CrossRef]
  24. T. R. M. Sales, G. M. Morris, “Fundamental limits of optical superresolution,” Opt. Lett. 22, 582–584 (1997). [CrossRef] [PubMed]
  25. J. A. Davis, D. M. Cottrell, C. A. Maley, M. R. Crivello, “Subdiffraction-limited focusing lens,” Appl. Opt. 33, 4128–4131 (1994). [CrossRef] [PubMed]
  26. Z. Andreic, “Superresolution performance of an absorbing glass positive lens element,” Appl. Opt. 36, 4354–4357 (1997). [CrossRef]
  27. C. J. R. Sheppard, G. Calvert, M. Wheatland, “Focal distribution for superresolving Toraldo filters,” J. Opt. Soc. Am. A 15, 849–854 (1998). [CrossRef]
  28. G. P. Karman, M. W. Beijersbergen, A. V. Duiji, D. Bouwmeester, J. P. Woerdman, “Airy pattern reorganization and subwavelength structure in a focus,” J. Opt. Soc. Am. A 15, 884–899 (1998). [CrossRef]
  29. J. Rosen, R. Salik, A. Yariv, “Pseudo-nondiffracting beams generated by radial harmonic functions,” J. Opt. Soc. Am. A 12, 2446–2457 (1995). [CrossRef]
  30. M. R. Wang, H. Su, “Multilevel diffractive microlens fabrication by one-step laser-assisted chemical etching upon high-energy-beam-sensitive glass,” Opt. Lett. 23, 876–878 (1998). [CrossRef]
  31. C. K. Wu, “High energy beam sensitive glasses,” U.S. patent5,285,517 (8February1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited