OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 11 — Apr. 10, 1999
  • pp: 2301–2308

Etching and printing of diffractive optical microstructures by a femtosecond excimer laser

Sakellaris Mailis, Ioanna Zergioti, George Koundourakis, Aris Ikiades, Argyro Patentalaki, Pagona Papakonstantinou, Nikolaos A. Vainos, and Costas Fotakis  »View Author Affiliations

Applied Optics, Vol. 38, Issue 11, pp. 2301-2308 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (1192 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diffractive optics fabrication is performed by two complementary processing methods that rely on the photoablation of materials by ultrashort UV laser pulses. The spatially selective ablation of materials permits the direct microetching of high-quality surface-relief patterns. In addition, the direct, spatially selective transfer of the ablated material onto planar and nonplanar receiving substrates provides a complementary microprinting operation. The radiation from the ultrashort pulsed excimer laser results in superior quality at relatively low-energy density levels, owing to the short absorption length and minimal thermal-diffusion effects. Computer-generated holographic structures are produced by both modes of operation. Submicrometer features, including Bragg-type structures, are microprinted onto planar and high-curvature optical-fiber surfaces, demonstrating the unique ability of the schemes for complex microstructure and potentially nanostructure development.

© 1999 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(200.4650) Optics in computing : Optical interconnects
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices

Original Manuscript: June 22, 1998
Revised Manuscript: November 2, 1998
Published: April 10, 1999

Sakellaris Mailis, Ioanna Zergioti, George Koundourakis, Aris Ikiades, Argyro Patentalaki, Pagona Papakonstantinou, Nikolaos A. Vainos, and Costas Fotakis, "Etching and printing of diffractive optical microstructures by a femtosecond excimer laser," Appl. Opt. 38, 2301-2308 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, ed., International Trends in Optics (Academic, London, 1991).
  2. G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989). [CrossRef]
  3. T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 191–195 (1990). [CrossRef]
  4. E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994). [CrossRef]
  5. L. Ristic, ed., Sensor Technology and Devices (Artech House, Boston, 1994).
  6. N. A. Vainos, S. Mailis, S. Pissadakis, L. Boutsikaris, P. Parmitter, P. Dainty, T. J. Hall, “Excimer laser use for microetching computer-generated holographic structures,” Appl. Opt. 35, 6304–6319 (1996). [CrossRef] [PubMed]
  7. G. P. Behrmann, M. T. Duignan, “Excimer laser micromachining for rapid fabrication of diffractive optical elements,” Appl. Opt. 36, 4666–4674 (1997). [CrossRef] [PubMed]
  8. J. Bohandy, B. F. Kim, F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60, 1538–1539 (1986). [CrossRef]
  9. J. Bohandy, B. F. Kim, F. J. Adrian, A. N. Jette, “Metal deposition at 532 nm using a laser transfer technique,” J. Appl. Phys. 63, 1158–1162 (1988). [CrossRef]
  10. E. Fogarassy, C. Fuchs, S. de Unamuno, F. Kerherve, J. Perriere, “High Tc superconducting thin film deposition by laser induced forward transfer,” Mater. Manuf. Processes 7, 31–51 (1992). [CrossRef]
  11. E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66, 457–459 (1989). [CrossRef]
  12. E. Matthias, M. Reichling, J. Siegel, O. W. Kading, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske, “The influence of thermal diffusion on laser ablation of metal films,” Appl. Phys. A 58, 129–136 (1994). [CrossRef]
  13. T. D. Bennett, C. Grigoropoulos, D. J. Krajnovich, “Near-threshold laser sputtering of gold,” J. Appl. Phys. 77, 849–864 (1995). [CrossRef]
  14. J. Ihlemann, B. Wolff-Rottke, “Excimer laser micromachining of inorganic dielectrics,” Appl. Surf. Sci. 106, 282–286 (1996). [CrossRef]
  15. P. P. Pronko, S. K. Dutta, D. Du, R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233–6240 (1995). [CrossRef]
  16. S. Preuss, E. Matthias, M. Stuke, “Subpicosecond UV-laser ablation of Ni films,” Appl. Phys. A 59, 79–82 (1994). [CrossRef]
  17. T. Götz, M. Stuke, “Short-pulse UV laser ablation of solid and liquid metals: indium,” Appl. Phys. A 64, 539–543 (1997). [CrossRef]
  18. X. Liu, D. Du, G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997). [CrossRef]
  19. P. Simon, J. Ilhemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys. A 63, 505–508 (1996). [CrossRef]
  20. I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–582 (1998). [CrossRef]
  21. C. Grivas, D. S. Gill, S. Mailis, L. Boutsikaris, N. A. Vainos, “Indium oxide thin-film holographic recorders grown via excimer laser reactive sputtering,” Appl. Phys. A 66, 201–204 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited