OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 12 — Apr. 20, 1999
  • pp: 2594–2604

Tunable Fabry–Perot etalon-based long-wavelength infrared imaging spectroradiometer

William J. Marinelli, Christopher M. Gittins, Alan H. Gelb, and B. David Green  »View Author Affiliations


Applied Optics, Vol. 38, Issue 12, pp. 2594-2604 (1999)
http://dx.doi.org/10.1364/AO.38.002594


View Full Text Article

Enhanced HTML    Acrobat PDF (454 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Imaging spectrometry enables passive, stand-off detection and analysis of the chemical composition of gas plumes and surfaces over wide geographic areas. We describe the use of a long-wavelength infrared imaging spectroradiometer, comprised of a low-order tunable Fabry–Perot etalon coupled to a HgCdTe detector array, to perform multispectral detection of chemical vapor plumes. The tunable Fabry–Perot etalon used in this research provides coverage of the 9.5–14-µm spectral region with a resolution of 7–9 cm-1. The etalon-based imaging system provides the opportunity to image a scene at only those wavelengths needed for chemical species identification and quantification and thereby minimize the data volume necessary for selective species detection. We present initial results using a brassboard imaging system for stand-off detection and quantification of chemical vapor plumes against near-ambient-temperature backgrounds. These data show detection limits of 22 parts per million by volume times meter (ppmv × m) and 0.6 ppmv × m for dimethyl methyphosphonate and SF6, respectively, for a gas/background ΔT of 6 K. The system noise-equivalent spectral radiance is approximately 2 µW cm-2 sr-1 µm-1. Model calculations are presented comparing the measured sensitivity of the sensor to the anticipated signal levels for two chemical release scenarios.

© 1999 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(110.3080) Imaging systems : Infrared imaging
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.6340) Spectroscopy : Spectroscopy, infrared

History
Original Manuscript: July 22, 1998
Revised Manuscript: November 25, 1998
Published: April 20, 1999

Citation
William J. Marinelli, Christopher M. Gittins, Alan H. Gelb, and B. David Green, "Tunable Fabry–Perot etalon-based long-wavelength infrared imaging spectroradiometer," Appl. Opt. 38, 2594-2604 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-12-2594


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Walter, D. Flanigan, “Detection of atmospheric pollutants: a correlation technique,” Appl. Opt. 14, 1423–1428 (1975). [CrossRef] [PubMed]
  2. M. L. G. Althouse, “Spectral filtering of thermal imagers for gas detection,” in Proceedings of the Third International Symposium on Protection Against Chemical Agents (Umea, Sweden, 1989), pp. 143–148.
  3. L. G. Carr, L. Fletcher, P. L. Holland, J. Leonelli, D. McPherrin, M. L. Althouse, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).
  4. M. L. G. Althouse, C. I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30, 1725–1733 (1991). [CrossRef]
  5. C. L. Bennett, M. R. Carter, D. J. Fields, “Infrared hyperspectral imaging results from vapor plume experiments,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 435–444 (1995). [CrossRef]
  6. C. L. Bennett, M. R. Carter, D. J. Fields, “Hyperspectral imaging in the infrared using LIFTIRS,” in Infrared Technology XXI, B. F. Andresen, M. S. Scholl, eds., Proc. SPIE2552, 274–283 (1995). [CrossRef]
  7. J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Marby, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. R. Descour, J. M. Mooney, eds., Proc. SPIE2819, 102–107 (1996). [CrossRef]
  8. C. M. Gittins, W. J. Marinelli, A. J. Ratkowski, “AIRIS hyperspectral imaging technology,” , presented at the Sixth Annual AIAA/BMDO Technology Readiness Symposium, San Diego, California, 18–22 August 1997 (American Institute of Aeronautics and Astronautics, New York, 1997).
  9. C. M. Gittins, W. G. Lawrence, W. J. Marinelli, “Frequency agile bandpass filter for direct detection lidar receivers,” Appl. Opt. 37, 8327–8335 (1998). [CrossRef]
  10. P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981). [CrossRef]
  11. D. R. Suhre, E. Villa, “Imaging spectroradiometer for the 8–12-µm region with a 3-cm-1 passband acousto-optic tunable filter,” Appl. Opt. 37, 2340–2345 (1998). [CrossRef]
  12. D. F. Flanigan, “Prediction of the limits of detection of hazardous vapors by passive infrared with the use of modtran,” Appl. Opt. 35, 6090–6098 (1996). [CrossRef] [PubMed]
  13. D. F. Flanigan, “The spectral signatures of chemical agent vapors and aerosols,” (U.S. Army Armament, Munitions and Chemical Command, Aberdeen Proving Ground, Md., 1985).
  14. L. D. Hoffland, R. J. Piffath, J. B. Bouck, “Spectral signatures of chemical agents and simulants,” Opt. Eng. 24, 982–984 (1985). [CrossRef]
  15. P. Varanasi, Z. Li, V. Nemtchinov, A. Cherukuri, “Spectral absorption-coefficient data on HCFC-22 and SF6 for remote-sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 52, 323–332 (1994). [CrossRef]
  16. J. Demirgian, S. Macha, S. Darby, “The challenge: collection of quantitative chemical release data,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 299–306.
  17. R. N. Clark, A. J. Gallagher, G. A. Swayze, “Material absorption band depth mapping of imaging spectrometer data using the complete band shape least-squares algorithm with library reference spectra,” in Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Pub. 90-54 (Jet Propulsion Laboratory, Pasadena Calif.1990), pp. 176–186.
  18. R. N. Clark, G. A. Swayze, A. Gallagher, N. Gorelick, F. A. Kruse, “Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials,” in Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Pub. 91-28 (Jet Propulsion Laboratory, Pasadena, Calif., 1991), pp. 2–3.
  19. R. N. Clark, G. A. Swayze, A. Gallagher, “Mapping the minerology and lithology of Canyonlands, Utah with imaging spectrometer data and the multiple materials,” in Summaries of the Third Annual JPL Airborne Geoscience Workshop, JPL Pub. 92-14 (Jet Propulsion Laboratory, Pasadena Calif., 1992), Vol. 1, pp. 11–12.
  20. U.S. Department of Energy, Richland Operations website, http://www.hanford.gov/twrs/char.pub/docs/tcr/t107/t107s2.htm .
  21. J. H. Seinfeld, ed. Atmospheric Chemistry and Physics of Air Pollution (Wiley, New York, 1986).
  22. E. E. Uthe, N. B. Nielson, R. D. Kaiser, “Airborne LIDAR and radiometric detection and analysis of effluent plumes,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 211–212.
  23. Fact sheet, Chemical and Biological Defense Information Center, http://www.cbiac.apgea.army.mil/faq.htm .
  24. J. E. O’Pray, “Regional power ballistic missiles: an emerging threat to deployed US forces?” Analytical study. (Air War College, Air University, Maxwell Air Force Base, Ala., 1990).
  25. R. Lees, A. F. Smith, eds., Design, Construction and Refurbishment of Laboratories (Ellis Horwood Limited, Chichester, England, 1984).
  26. J. D. Barden, R. Kroutil, “Development and preliminary field evaluation of a field-of-view near real-time 3-D stack plume model developed for the measurement attributes of remote optical sensors,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 457–467.
  27. modtran2 (Ontar Corporation, North Andover, Mass., 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited