OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 12 — Apr. 20, 1999
  • pp: 2616–2624

Backscattering measurements of atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species

Avishai Ben-David  »View Author Affiliations


Applied Optics, Vol. 38, Issue 12, pp. 2616-2624 (1999)
http://dx.doi.org/10.1364/AO.38.002616


View Full Text Article

Enhanced HTML    Acrobat PDF (263 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The volume backscattering coefficients of atmospheric aerosol were measured with a tunable CO2 lidar system at various wavelengths in Utah (a desert environment) along a horizontal path a few meters above the ground. In deducing the aerosol backscattering, a deconvolution (to remove the smearing effect of the long CO2 lidar pulse and the lidar limited bandwidth) and a constrained-slope method were employed. The spectral shape β(λ) was similar for all the 13 measurements during a 3-day period. A mean aerosol backscattering-wavelength dependence β(λ) was computed from the measurements and used to estimate the error Δ(CL) (concentration–path-length product) in differential-absorption lidar measurements for various gases caused by the systematic aerosol differential backscattering and the error that is due to fluctuations in the aerosol backscattering. The water-vapor concentration–path-length product CL and the average concentration C = 〈CL〉/L for a path length L computed from the range-resolved lidar measurements is consistently in good agreement with the water-vapor concentration measured by a meteorological station. However, I was unable to deduce, reliably, the range-resolved water-vapor concentration C(r), which is the derivative of the range-dependent product CL, because of the effect of residual noise caused mainly by errors in the deconvolved lidar measurements.

© 1999 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering
(290.5820) Scattering : Scattering measurements

History
Original Manuscript: September 11, 1998
Revised Manuscript: January 4, 1999
Published: April 20, 1999

Citation
Avishai Ben-David, "Backscattering measurements of atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species," Appl. Opt. 38, 2616-2624 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-12-2616


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Byer, M. Garbuny, “Pollutant detection by absorption using Mie scattering and topographic targets as retroreflectors,” Appl. Opt. 12, 1496–1505 (1973). [CrossRef] [PubMed]
  2. J. C. Petheram, “Differential backscatter from the atmospheric aerosol: the implications for IR differential absorption lidar,” Appl. Opt. 20, 3941–3946 (1981). [CrossRef] [PubMed]
  3. W. B. Grant, “Lidar for atmospheric and hydrospheric studies,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel Dekker, New York1995), pp. 213–305.
  4. A. Ben-David, “Mueller matrix for atmospheric aerosols at CO2 laser wavelengths from backscattering polarized lidar measurements,” J. Geophys. Res. 103, 26,041–26,050 (1999). [CrossRef]
  5. R. T. H. Collis, “Lidar: a new atmospheric probe,” Q. J. R. Meterol. Soc. 92, 220–230 (1966). [CrossRef]
  6. G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, “Carbon dioxide laser absorption spectra and low ppb photoacoustic detection of hydrazine fuels,” Appl. Opt. 19, 2726–2734 (1980). [CrossRef] [PubMed]
  7. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar,” Appl. Opt. 21, 2275–2286 (1982). [CrossRef] [PubMed]
  8. P. V. Cvijin, D. Ignjatijevic, I. Mendez, M. Sreckovic, L. Pantani, I. Pippi, “Reflectance spectra of terrestrial surface materials at CO2 laser wavelengths: effect on DIAL and geological remote sensing,” Appl. Opt. 26, 4323–4329 (1987). [CrossRef]
  9. L. T. Molina, W. B. Grant, “FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases: implications for remote sensing,” Appl. Opt. 23, 3893–3900 (1984). [CrossRef]
  10. A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “A high PRF, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992). [CrossRef] [PubMed]
  11. A. Ben-David, “Optimal bandwidth for topographical DIAL detection,” Appl. Opt. 35, 1531–1536 (1996). [CrossRef] [PubMed]
  12. A. Ben-David, R. G. Vanderbeek, S. W. Gotoff, F. M. D’Amico, “The effect of spectral time lag correlation coefficient and signal averaging on airborne CO2 DIAL measurements,” in Application of Lidar to Current Atmospheric Topics II, A. J. Sedlacek, K. W. Fischer, eds., Proc. SPIE3127, 224–236 (1997). [CrossRef]
  13. R. G. Vanderbeek, A. Ben-David, F. M. D’Amico, S. W. Gotoff, “Issues effecting the signal-to-noise ratio for airborne CO2 DIAL measurements,” presented at the 19th International Laser Radar Conference, 6–10 July 1998, Annapolis, Md.
  14. A. Ben-David, “Wavelength dependence of backscattering and extinction of kaolin dust at CO2 wavelength: effect of multiple scattering,” Appl. Opt. 32, 1598–1605 (1993). [CrossRef] [PubMed]
  15. A. Ben-David, “Multiple-scattering effects on differential absorption for the transmission of a plane parallel beam in a homogeneous medium,” Appl. Opt. 36, 1386–1398 (1997). [CrossRef] [PubMed]
  16. G. K. Yue, G. S. Kent, U. O. Farrukh, A. Deepak, “Modeling atmospheric aerosol backscatter at CO2 laser wavelength. 3. Effect of changes in wavelength and ambient conditions,” Appl. Opt. 22, 1671–1678 (1983). [CrossRef]
  17. J. R. Irons, R. A. Weismiller, G. W. Peterson, “Soil reflectance,” in Theory and Applications of Optical Remote Sensing, G. Asrar, ed. (Wiley, New York1989), pp. 66–106.
  18. W. B. Grant, “Water vapor absorption coefficients in the 8–13-µm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990). [CrossRef] [PubMed]
  19. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987). [CrossRef] [PubMed]
  20. M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water vapor absorption of carbon dioxide laser radiation,” Appl. Opt. 15, 2480–2488 (1976). [CrossRef] [PubMed]
  21. J. Ryan, M. H. Hubert, R. A. Crane, “Water vapor absorption at isotopic CO2 laser wavelength,” Appl. Opt. 22, 711–717 (1983); erratum, 23, 1302–1303 (1984).
  22. R. J. Brewer, C. W. Bruce, “Photoacoustic spectroscopy of NH3 at the 9-µm and 10-µm 12C16O2 laser wavelengths,” Appl. Opt. 17, 3746–3749 (1978). [CrossRef] [PubMed]
  23. R. R. Patty, G. M. Russwurn, W. A. McClenny, D. R. Morgan, “CO2 laser absorption coefficients for determining ambient level of O3 NH3 and C2H4,” Appl. Opt. 13, 2850–2854 (1974). [CrossRef] [PubMed]
  24. A. Mayer, J. Comera, H. Charpentier, C. Jaussaud, “Absorption coefficients of various pollutant gases at CO2 laser wavelengths: application to the remote sensing of those pollutants,” Appl. Opt. 17, 391–393 (1978); errata, 19, 1572 (1980).
  25. M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, “Laser absorption spectrometer: remote measurement of tropospheric ozone,” Appl. Opt. 15, 545–552 (1981). [CrossRef]
  26. U. Persson, B. Marthinsson, J. Johansson, S. T. Eng, “Temperature and pressure dependence of NH3 and C2H4 absorption cross sections at CO2 laser wavelengths,” Appl. Opt. 19, 1711–1716 (1980). [CrossRef] [PubMed]
  27. V. N. Aref’yev, G. I. Bugrim, K. N. Visheratin, N. I. Sizov, “The effects of the parameters of the atmosphere in remote laser gas analysis,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 28, 295–300 (1992).
  28. W. Schnell, G. Fischer, “Carbon dioxide laser absorption coefficients of various IR pollutants,” Appl. Opt. 14, 2058–2059 (1975). [CrossRef] [PubMed]
  29. A. Ben-David, “Temperature dependence of water vapor absorption coefficients for CO2 differential absorption lidars,” Appl. Opt. 32, 7479–7483 (1993). [CrossRef] [PubMed]
  30. E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10-µm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited