OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 13 — May. 1, 1999
  • pp: 2767–2774

Proof-testing and probabilistic lifetime estimation of glass fibers for sensor applications

Masahiro Komachiya, Rintarou Minamitani, Takayuki Fumino, Tatsunori Sakaguchi, and Shizuhisa Watanabe  »View Author Affiliations

Applied Optics, Vol. 38, Issue 13, pp. 2767-2774 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The mechanical reliability of sensing glass fiber is one of the important problems in the practical use of fiber-optic sensors. To ensure long-term reliability on a mass-production level, a method of proof-testing is applied to a sensing glass fiber that will be subjected to mechanical deformation in its service situation. We propose to employ a higher strain level (screening level) in the proof-testing with a fiber-recoating technique that can suppress excessive damage during the testing. We consider a standard lifetime of 15 years of automotive applications and ensure a practical level of failure probability by a model calculation by using the strength data of a prototype fiber with the method of fracture-mechanics theory.

© 1999 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2400) Fiber optics and optical communications : Fiber properties

Original Manuscript: October 9, 1998
Revised Manuscript: January 15, 1999
Published: May 1, 1999

Masahiro Komachiya, Rintarou Minamitani, Takayuki Fumino, Tatsunori Sakaguchi, and Shizuhisa Watanabe, "Proof-testing and probabilistic lifetime estimation of glass fibers for sensor applications," Appl. Opt. 38, 2767-2774 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982). [CrossRef]
  2. C. M. Davis, “Fiber optic sensors: an overview,” Opt. Eng. 24, 347–351 (1985). [CrossRef]
  3. See, for example, G. P. Hancke, “A fiber-optic density sensor for monitoring the state-of-charge of a lead acid battery,” IEEE Trans. Instrum. Meas. 39, 247–250 (1990) and Refs. 4–6.
  4. L. Sheng, S. Li, S. Xu, L. Zhu, “Studies of displacement sensing based on the deformation loss of an optical fiber ring,” in International Conference on Optical Fiber Sensors in China OFS(C) ’91, B. Culshaw, Y. Liao, eds., Proc. SPIE1572, 273–278 (1991). [CrossRef]
  5. J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995). [CrossRef]
  6. G. N. Bakalidis, E. Glavas, N. G. Voglis, P. Tsalides, “A low-cost fiber optic force sensor,” IEEE Trans. Instrum. Meas. 45, 328–331 (1996). [CrossRef]
  7. Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53, 4847–4853 (1982). [CrossRef]
  8. M. Komachiya, H. Sonobe, S. Oho, M. Kurita, T. Nakazawa, T. Sasayama, “Multiplex in-cylinder pressure measurement utilizing an optical fiber with specific refractive-index composition,” Appl. Opt. 35, 1143–1150 (1996). [CrossRef] [PubMed]
  9. M. Komachiya, H. Sonobe, T. Fumino, T. Sakaguchi, K. Kawakami, S. Watanabe, T. Sasayama, “Knocking detection of a gasoline engine by utilizing an optical fiber with specific refractive-index composition,” Appl. Opt. 37, 1152–1158 (1998). [CrossRef]
  10. M. Komachiya, N. Kurihara, A. Kodama, T. Sakaguchi, T. Fumino, S. Watanabe, “A method of misfire detection by superposing outputs of combustion pressure sensors,” SAE paper 982588 (Society of Automotive Engineers, Warrendale, Pa., 1998).
  11. D. Kalish, B. K. Tariyal, “Static and dynamic fatigue of a polymer-coated fused silica optical fiber,” J. Am. Ceram. Soc. 61, 518–523 (1978). [CrossRef]
  12. A. G. Evans, S. M. Wiederhorn, “Proof testing of ceramic materials—an analytical basis for failure prediction,” Int. J. Fract. 10, 379–392 (1974). [CrossRef]
  13. R. Olshansky, R. D. Maurer, “Tensile strength and fatigue of optical fibers,” J. Appl. Phys. 47, 4497–4499 (1976). [CrossRef]
  14. R. Adams, P. W. McMillan, “Static fatigue in glass,” J. Mater. Sci. 12, 643–657 (1977). [CrossRef]
  15. M. Muraoka, H. Abe, T. Teraoka, “Probabilistic failure prediction for silica optical fibers based on the exponential law,” Trans. Jpn. Soc. Mech. Eng. A 61, 682–689 (1995) (in Japanese). [CrossRef]
  16. M. Muraoka, H. Abe, “Subcritical crack growth in silica optical fibers in a wide range of crack velocities,” J. Am. Ceram. Soc. 79, 51–57 (1996) and references therein. [CrossRef]
  17. R. Minamitani, M. Komachiya, A. Yasukawa, S. Watanabe, “Mechanical properties of a polyimide coat for fiber-optic sensors” Trans. Inst. Electr. Eng. Jpn. 119-E, 60–66 (1999) (in Japanese).
  18. M. Muraoka, K. Ebata, H. Abe, “Effect of humidity on small-crack growth in silica optical fibers,” J. Am. Ceram. Soc. 76, 1545–1550 (1993). [CrossRef]
  19. M. Muraoka, H. Abe, “Exponential law of small-crack growth in silica optical fibers,” in Proceedings of the International Mechanical Congress Exposition (American Society of Mechanical Engineers, New York, 1994), Vol. AMD-195, pp. 141–149.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited