OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 13 — May. 1, 1999
  • pp: 2775–2786

Viewing Angle of Liquid-Crystal Displays: Representation on the Poincaré Sphere

Koenraad Vermeirsch, Arnout De Meyere, Johan Fornier, and Herbert De Vleeschouwer  »View Author Affiliations


Applied Optics, Vol. 38, Issue 13, pp. 2775-2786 (1999)
http://dx.doi.org/10.1364/AO.38.002775


View Full Text Article

Acrobat PDF (327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the extended Jones calculus for oblique incidence, we have succeeded in representing light propagation through birefringent media on the Poincaré sphere for arbitrary propagation directions. The situation is far more complicated than for the case of perpendicular transmission. To achieve a simple representation method we had to define appropriate conventions. One can use the method to evaluate the efficiency of existing viewing-angle compensation foils. The Poincaré sphere turns out to be a valid geometrical method for the design of new compensation foils that optimize the contrast ratio. The different parameters of a homogeneous compensation foil that is applied to a liquid-crystal display to improve the viewing-angle properties can be systematically determined.

© 1999 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices
(230.4320) Optical devices : Nonlinear optical devices
(260.1180) Physical optics : Crystal optics

Citation
Koenraad Vermeirsch, Arnout De Meyere, Johan Fornier, and Herbert De Vleeschouwer, "Viewing Angle of Liquid-Crystal Displays: Representation on the Poincaré Sphere," Appl. Opt. 38, 2775-2786 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-13-2775


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. W. Berreman, “Optics in stratified and anisotropic media: 4 × 4 matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972).
  2. D. W. Berreman, “Optics in smoothly varying anisotropic planar structures: application to liquid-crystal twist cells,” J. Opt. Soc. Am. 63, 1374–1380 (1974).
  3. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742–756 (1979).
  4. R. C. Jones, “A new calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941).
  5. R. M. A. Azzam and N. M. Bashara, “Simplified approach to the propagation of polarized light in anisotropic media: application to liquid crystals,” J. Opt. Soc. Am. 62, 1252–1257 (1972).
  6. E. De Ley, A. De Meyere, J. Fornier, B. Maximus, P. De Meerleer, C. Colpaert, and H. Pauwels, “A simple numerical transmission model for general LCD-configurations,” Mol. Cryst. Liq. Cryst. 262, 577–590 (1995); paper also presented at the Fifteenth International Liquid Crystal Conference, Budapest, Hungary, 3–8 July 1994.
  7. P. Yeh, “Extended Jones matrix method,” J. Opt. Soc. Am. 72, 507–513 (1982).
  8. A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57, 2767–2769 (1990).
  9. A. Lien, “A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays,” Liq. Cryst. 22, 171–175 (1997).
  10. W. A. Shurcliff, Polarized Light, Production and Use (Harvard U. Press, Cambridge, Mass., 1962).
  11. J. Bigelow and R. Kashnow, “Poincaré sphere analysis of liquid crystal optics,” Appl. Opt. 16, 2090–2096 (1977).
  12. A. De Meyere, “Light propagation and color variations in liquid crystal displays,” J. Opt. Soc. Am. A 11, 731–739 (1994).
  13. O. Itoh, K. Kondo, N. Kikuchi, and H. Madokoro, “Liquid crystal display apparatus having driving voltage to enable light of many wavelengths to take a same sign along one axis of a Poincaré sphere.” U.S. patent 5,485,295 (16 January 1996).
  14. K. H. Kang, J. M. Moon, T. Yoon, J. C. Kim, G. Lee, and E. Lee, “Design of a reflective multicolor STN-LCD on the Poincaré sphere,” in Eurodisplay ’96 Birmingham (Society for Information Display, San Jose, Calif., 1996), pp. 383–386.
  15. A. De Meyere, B. Maximus, and C. Colpaert, “Optical compensation films for LCD’s: design on the Poincaré sphere,” in Eurodisplay ’96 Birmingham (Society for Information Display, San Jose, Calif., 1996), pp. 355–358.
  16. B. K. Winker, I. W. J. Gunning, D. B. Taber, and L. G. Hale, “Optical compensator for improved gray scale performance in liquid crystal display,” U.S. patent 5,504,603 (2 April 1996).
  17. G. Koch, B. K. Winker, and I. W. J. Gunning, “Slay/twist compensator for improved gray scale performance in twisted nematic liquid crystal displays,” international patent application WO 96/10768 (11 April 1996).
  18. B. K. Winker, L. G. Hale, D. B. Taber, and I. W. J. Gunning, “Viewing angle enhancement for vertically aligned cholesteric liquid crystal displays,” international patent application WO 96/10774 (11 April 1996).
  19. P. van de Witte, S. Stallinga, and J. van Haaren, “Novel compensation foils for active matrix TN displays,” in Symposium Digest Boston ’97 (Society for Information Display, San Jose, Calif., 1997), pp. 687–690.
  20. G. X. M. Jones, “TN-LCD wide-viewing-angle optimization,” in Symposium Digest Anaheim ’98 (Society for Information Display, San Jose, Calif., 1998), pp. 475–478.
  21. H. Pauwels, K. Vermeirsch, J. Fornier, and A. De Meyere, “Analytical expression for off-axis light transmission through homogeneously oriented LC,” Mol. Cryst. Liq. Cryst. 9, 147–156 (1998).
  22. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1964).
  23. H. F. Jones, Groups, Representations and Physics (Adam Hilger, Bristol, UK, 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited