OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 13 — May. 1, 1999
  • pp: 2927–2943

Development of a time-domain optical mammograph and first in vivo applications

Dirk Grosenick, Heidrun Wabnitz, Herbert H. Rinneberg, K. Thomas Moesta, and Peter M. Schlag  »View Author Affiliations


Applied Optics, Vol. 38, Issue 13, pp. 2927-2943 (1999)
http://dx.doi.org/10.1364/AO.38.002927


View Full Text Article

Enhanced HTML    Acrobat PDF (1134 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a laser-pulse mammograph capable of recording optical mammograms within ∼3 min by measuring time-resolved transmittance at each of typically 1500 scan positions, 2.5 mm apart. As a first application two patients who have tumors were investigated successfully. From measured distributions of times of flight of photons corrected for edge effects we derived (1) characteristic quantities, such as photon counts in selected time windows, to generate optical mammograms; (2) effective transport scattering and absorption coefficients of breast tissue at each scan position, assuming the breast to be homogeneous; and (3) optical properties of a selected tumor by applying the theory of diffraction of photon density waves by spherical inhomogeneity. Mammograms recorded at different lateral offsets between source and detector fiber were used to estimate the depth of inhomogeneities.

© 1999 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5270) Medical optics and biotechnology : Photon density waves
(170.6920) Medical optics and biotechnology : Time-resolved imaging

History
Original Manuscript: September 15, 1998
Revised Manuscript: December 22, 1998
Published: May 1, 1999

Citation
Dirk Grosenick, Heidrun Wabnitz, Herbert H. Rinneberg, K. Thomas Moesta, and Peter M. Schlag, "Development of a time-domain optical mammograph and first in vivo applications," Appl. Opt. 38, 2927-2943 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-13-2927


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990). [CrossRef] [PubMed]
  2. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997). [CrossRef] [PubMed]
  3. L. Götz, S. H. Heywang-Köbrunner, O. Schütz, H. Siebold, “Optical mammography on preoperative patients,” Akt. Radiol. 8, 31–33 (1998).
  4. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996). [CrossRef] [PubMed]
  5. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  6. J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995). [CrossRef] [PubMed]
  7. R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-gated viewing studies on tissuelike phantoms,” Appl. Opt. 35, 3432–3440 (1996). [CrossRef] [PubMed]
  8. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging with diffusing light: an experimental study of the effect of background optical properties,” Appl. Opt. 37, 3564–3573 (1998). [CrossRef]
  9. S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994). [CrossRef] [PubMed]
  10. V. Ntziachristos, X. Ma, M. Schnall, B. Chance, “A multichannel single photon counting NIR imager for coregistration with MRI,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 219–227 (1997). [CrossRef]
  11. J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W. ’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1997). [CrossRef]
  12. G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994). [CrossRef] [PubMed]
  13. K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996). [CrossRef] [PubMed]
  14. T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996). [CrossRef] [PubMed]
  15. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997). [CrossRef]
  16. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998). [CrossRef]
  17. H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time-resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996). [CrossRef] [PubMed]
  18. V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998). [CrossRef] [PubMed]
  19. S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path lengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992). [CrossRef] [PubMed]
  20. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  21. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994). [CrossRef] [PubMed]
  22. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996). [CrossRef] [PubMed]
  23. H. Danlewski, “Physikalische Grundlagen der zeitaufgelösten optischen Mammographie einschliesslich Anwendungen,” Ph.D. dissertation (Freie Universität Berlin, Berlin, 1998).
  24. A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998). [CrossRef]
  25. H. Wabnitz, H. Rinneberg, “Imaging in turbid media by photon density waves: spatial resolution and scaling relations,” Appl. Opt. 36, 64–74 (1997). [CrossRef] [PubMed]
  26. J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990). [CrossRef] [PubMed]
  27. L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997). [PubMed]
  28. D. A. Boas, M. A. O’Leary, B. Chance, A. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited