OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 15 — May. 20, 1999
  • pp: 3206–3213

Effect of Temperature on the Absorption Loss of Chalcogenide Glass Fibers

Vinh Q. Nguyen, Jas S. Sanghera, Frederic H. Kung, Ishwar D. Aggarwal, and Isabel K. Lloyd  »View Author Affiliations


Applied Optics, Vol. 38, Issue 15, pp. 3206-3213 (1999)
http://dx.doi.org/10.1364/AO.38.003206


View Full Text Article

Acrobat PDF (191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The change in the absorption loss of IR-transmitting chalcogenide glass fibers in the temperature range of ?90 °C ? <i>T</i> ? 70 °C was investigated. For sulfur-based glass fibers the change in loss relative to room temperature was slightly affected by the temperature in the wavelength region of 1–5 ?m. For ? ? 6 ?m the change in loss was mainly due to multiphonon absorption. The change in loss for tellurium-based glass fibers increased significantly at <i>T</i> = 60 °C. The increase in the loss at short wavelengths (? ? 4.1 ?m) was due to electronic excitations in the tail states. Between 5 and 9 ?m there was noticeable free-carrier absorption. Beyond ? ? 9 ?m, multiphonon absorption dominated the loss spectrum.

© 1999 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2390) Fiber optics and optical communications : Fiber optics, infrared

Citation
Vinh Q. Nguyen, Jas S. Sanghera, Frederic H. Kung, Ishwar D. Aggarwal, and Isabel K. Lloyd, "Effect of Temperature on the Absorption Loss of Chalcogenide Glass Fibers," Appl. Opt. 38, 3206-3213 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-15-3206


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. R. Gannon, “Materials for mid-infrared waveguides,” in Infrared Fibers, L. G. DeShazer, ed., Proc. SPIE 266, 62–68 (1981).
  2. J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198–2202 (1995).
  3. G. Nau, F. Bucholtz, K. J. Ewing, S. T. Vohra, J. S. Sanghera, and I. D. Aggarwal, “Fiber optic IR reflectance sensor for the cone penetrometer,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. V. Dinh, ed., Proc. SPIE 2504, 291–296 (1995).
  4. L. E. Busse, J. S. Sanghera, and I. D. Aggarwal, “High optical power transmission through glass cladded infrared fiber,” in Proceedings of the 1994 Infrared Information Symposia Specialty Group Infrared Materials (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1995), p. 341.
  5. J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, and R. Mossadegh, “Development of low loss IR transmitting chalcogenide glass fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, A. Harrington, and D. M. Harris, eds., Proc. SPIE 2396, 71–77 (1995).
  6. L. E. Busse, J. Moon, J. S. Sanghera, and I. D. Aggarwal, “Chalcogenide fibers deliver high IR power,” Laser World Focus 32, 143–150 (1996).
  7. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” J. Lightwave Technol. 12, 737–741 (1994).
  8. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60?x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
  9. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties of electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
  10. M. F. Churbanov, “High purity chalcogenide glasses as material for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
  11. M. Lax and E. Burstein, “Infrared lattice absorption in ionic and homopolar crystals,” Phys. Rev. 97, 39–52 (1955).
  12. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University, London, 1954).
  13. G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, E. M. Dianov, and V. G. Plotnichenko, “Middle infrared As–S, As–Se, Ge–As–Se chalcogenide glass fibers,” Int. J. Optoelectron. 7, 237–254 (1992).
  14. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324–1325 (1953).
  15. J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971).
  16. I. Inagawa, S. Moromoto, T. Yamashita, and I. Shirotani, “Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl. Phys. 36, 2229–2235 (1997).
  17. R. Olshansky, “Propagation in glass optical waveguides,” Rev. Mod. Phys. 51, 341–367 (1979).
  18. M. E. Lines, “Physical properties of materials: theoretical overview,” in Handbook of Infrared Optical Materials, P. Klocek, ed. (Marcel Dekker, New York, 1991).
  19. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart, Winston, New York, 1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited