OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 15 — May. 20, 1999
  • pp: 3308–3315

Complete Characterization of a Self-Mode-Locked Ti:Sapphire Laser in the Vicinity of Zero Group-Delay Dispersion by Frequency-Resolved Optical Gating

John M. Dudley, Salah M. Boussen, David M. J. Cameron, and John D. Harvey  »View Author Affiliations


Applied Optics, Vol. 38, Issue 15, pp. 3308-3315 (1999)
http://dx.doi.org/10.1364/AO.38.003308


View Full Text Article

Acrobat PDF (426 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The intensity and the phase of ultrashort pulses from a self-mode-locked Ti:sapphire laser operating in the vicinity of zero group-delay dispersion (GDD) have been completely characterized by the technique of frequency-resolved optical gating (FROG). For small values of negative GDD, the appearance of a dispersive wave in the pulse spectrum is manifested in the measured FROG trace, and pulse retrieval directly shows its association with a broad leading-edge pedestal. For positive GDD, we confirm previous experimental observations of picosecond pulses with large positive chirp and report a new operating regime in which the output pulses are of picosecond duration but are intensity modulated at 20 THz. The physical origin of this modulation is discussed by analogy with similar effects observed during pulse propagation in optical fibers, and the experimental results are compared with a model of intracavity four-wave mixing about the cavity zero GDD wavelength.

© 1999 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7100) Ultrafast optics : Ultrafast measurements

Citation
John M. Dudley, Salah M. Boussen, David M. J. Cameron, and John D. Harvey, "Complete Characterization of a Self-Mode-Locked Ti:Sapphire Laser in the Vicinity of Zero Group-Delay Dispersion by Frequency-Resolved Optical Gating," Appl. Opt. 38, 3308-3315 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-15-3308


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, “Femtosecond solid-state lasers,” IEEE J. Quantum Electron. 28, 2097–2121 (1992).
  2. W. Sibbett, R. S. Grant, and D. E. Spence, “Broadly tunable femtosecond solid-state laser sources,” Appl. Phys. B 58, 171–181 (1994).
  3. Ch. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
  4. T. Brabec, Ch. Spielmann, and F. Krausz, “Mode locking in solitary lasers,” Opt. Lett. 16, 1961–1963 (1991).
  5. H. A. Haus, J. D. Moores, and L. E. Nelson, “Effect of third-order dispersion on passive mode locking,” Opt. Lett. 18, 51–53 (1993).
  6. P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, and A. J. Schmidt, “Operation of a femtosecond Ti:sapphire solitary laser in the vicinity of zero group-delay dispersion,” Opt. Lett. 18, 54–56 (1993).
  7. T. Brabec and S. M. J. Kelly, “Third-order dispersion as a limiting factor to mode locking in femtosecond solitary lasers,” Opt. Lett. 18, 2002–2004 (1993).
  8. I. P. Christov, M. M. Murnane, H. C. Kapteyn, J. Zhou, and C.-P. Huang, “Fourth-order dispersion-limited solitary pulses,” Opt. Lett. 19, 1465–1467 (1994).
  9. J. N. Elgin, T. Brabec, and S. M. J. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114, 321–328 (1995).
  10. J. Hermann, V. P. Kalosha, and M. Müller, “Higher-order phase dispersion in femtosecond Kerr-lens mode-locked solid-state lasers: sideband generation and pulse splitting,” Opt. Lett. 22, 236–238 (1997).
  11. M. Santagiustina, “Third-order dispersion radiation in solid-state solitary lasers,” J. Opt. Soc. Am. B 14, 1484–1495 (1997).
  12. Q. Lin and I. Sorokina, “High-order dispersion effects in solitary mode-locked lasers: sideband generation,” Opt. Commun. 153, 285–288 (1998).
  13. H. A. Haus, “Short pulse generation,” in Compact Sources of Ultrashort Light Pulses, I. N. Duling III, ed. (Cambridge U. Press, New York, 1995), pp. 1–56.
  14. I. P. Christov, H. C. Kapteyn, M. M. Murnane, C.-P. Huang, and J. Zhou, “Space–time focusing of femtosecond pulses in a Ti:sapphire laser,” Opt. Lett. 20, 309–311 (1995).
  15. A. Stingl, M. Lenzner, Ch. Spielmann, and F. Krausz, “Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser,” Opt. Lett. 20, 602–604 (1995).
  16. M. Piché, J.-F. Cormier, and X. Zhu, “Bright optical soliton in the presence of fourth-order dispersion,” Opt. Lett. 21, 845–847 (1996).
  17. B. Proctor, E. Westwig, and F. Wise, “Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group velocity dispersion,” Opt. Lett. 18, 1654–1656 (1993).
  18. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).
  19. Ch. Spielmann, T. Brabec, and F. Krausz, “Reply to comment on ’Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser” and ’Ultrabroadband ring oscillator for sub-10-fs pulse generation, ’” Opt. Lett. 22, 1884–1886 (1997).
  20. I. D. Jung, F. X. Kärtner, J. Henkmann, G. Zhang, and U. Keller, “High-dynamic range characterisation of ultrashort pulses,” Appl. Phys. B 65, 307–310 (1997).
  21. A. Kasper and K. J. Witte, “Contrast and phase of ultrashort laser pulses from Ti:sapphire ring and Fabry–Perot resonators based on chirped mirrors,” J. Opt. Soc. Am. B 15, 2490–2495 (1998).
  22. S. Uemura and K. Miyazaki, “Operation of a femtosecond Cr:LiSAF solitary laser near zero group-delay dispersion,” Opt. Commun. 133, 201–204 (1997).
  23. G. Boyer, “Dispersive wave generation in a Cr4+:forsterite femtosecond soliton-like laser,” Opt. Commun. 141, 279–282 (1997).
  24. B. Chassagne, G. Jonusauskas, J. Oberlé, and C. Rullière, “Multipulse operation regime in a self-modelocked Cr4+:forsterite femtosecond laser,” Opt. Commun. 150, 355–362 (1998).
  25. Note that the frequency-resolved optical gating measurements reported in Ref. 21 were not used for pulse reconstruction in the presence of dispersive waves.
  26. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
  27. J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, R. Leonhardt, and P. D. Drummond, “Direct measurement of pulse distortion near the zero-dispersion wavelength in optical fibers using frequency-resolved optical gating,” Opt. Lett. 22, 457–459 (1997).
  28. W. H. Knox, “In situ measurement of complete intracavity dispersion in an operating Ti:sapphire femtosecond laser,” Opt. Lett. 17, 514–516 (1992).
  29. K. W. Delong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206–2215 (1994).
  30. D. T. Reid, C. McGowan, W. E. Sleat, and W. Sibbett, “A real-time FROG trace acquisition system for non-amplified femtosecond oscillators,” Eng. Lab. Notes in Opt. Photon. News >8 (5) (1997).
  31. X. Zhu, J.-F. Cormier, and M. Piché, “Study of dispersion compensation in femtosecond lasers,” J. Mod. Opt. 43, 1701–1721 (1996).
  32. For example, at a wavelength of 810 nm, 1 mm of additional intracavity SF13 prism material introduces additional GDD of +163 fs2 and TOD of +105 fs3 per round trip.
  33. K. W. Delong, R. Trebino, and D. J. Kane, “A comparison of ultrashort pulse frequency resolved optical gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11, 1595–1608 (1994).
  34. C.-Y. Wang, P. L. Baldeck, Y. Budansky, and R. R. Alfano, “15-THz pulse generation arising from modulation instability oscillation in a colliding-pulse mode-locking dye laser,” Opt. Lett. 14, 497–499 (1989).
  35. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Francisco, Calif., 1995).
  36. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–137 (1986).
  37. C. Lin, W. A. Reed, A. D. Pearson, and H.-T. Shang, “Phase matching in the minimum chromatic dispersion region of single-mode fibers for stimulated four-photon mixing,” Opt. Lett. 6, 493–495 (1981).
  38. M. Stern, J. P. Heritage, W. T. Anderson, and J. Kilmer, “Soliton technique to characterize single-mode fiber dispersion,” J. Lightwave. Technol. 10, 1777–1780 (1992).
  39. J. Schütz, W. Hodel, and H. P. Weber, “Nonlinear pulse distortion at the zero dispersion wavelength of an optical fibre,” Opt. Commun. 95, 357–365 (1993).
  40. V. P. Yanovsky and F. W. Wise, “Nonlinear propagation of high-power, sub-100-fs pulses near the zero dispersion wavelength of an optical fiber,” Opt. Lett. 19, 1547–1549 (1994).
  41. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982).
  42. G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero dispersion wavelength,” Phys. Rev. A 33, 1765–1776 (1986).
  43. G. R. Boyer and X. F. Carlotti, “Nonlinear propagation in a single-mode optical fiber in case of small group velocity dispersion,” Opt. Commun. 60, 18–22 (1986).
  44. E. A. Golovchenko and A. N. Pilipetskii, “Unified analysis of four-photon mixing, modulational instability, and stimulated Raman scattering under various polarization conditions in fibers,” J. Opt. Soc. Am. B 11, 92–101 (1994).
  45. Numerical simulations indicate that the opposite sign of TOD in the fiber is responsible for the fact that the intensity modulation in the fiber experiments appears on the pulse’s leading edge rather than on the trailing edge as in the Ti:sapphire experiments.
  46. Here we use an effective beam radius in the Ti:sapphire crystal of r ? 15 ?m, and we estimate an effective peak power associated with FWM of P0 ? 10 kW.
  47. V. P. Kalosha, M. Müller, J. Hermann, and S. Gatz, “Spatiotemporal model of femtosecond pulse generation in Kerr-lens mode-locked solid state lasers,” J. Opt. Soc. Am. B 15, 535–550 (1998).
  48. I. P. Christov and V. D. Stoev, “Kerr-lens mode-locked laser model: role of space–time effects,” J. Opt. Soc. Am. B 15, 1960–1966 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited