Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Application of statistical methods to the determination of slope in lidar data

Not Accessible

Your library or personal account may give you access

Abstract

Assumptions made in the analysis of both Raman lidar measurements of aerosol extinction and differential absorption lidar (DIAL) measurements of an absorbing species are tested. Statistical analysis techniques are used to enhance the estimation of aerosol extinction and aerosol extinction error that is usually handled using a linear model. It is determined that the most probable extinction value can differ from that of the linear assumption by up to 10% and that differences larger than 50% can occur in the calculation of extinction error. Ignoring error in the number density alters the calculated extinction by up to 3% and that of extinction error by up to 10%. The preceding results were obtained using the least-squares technique. The least-squares technique assumes that the data being regressed are normally distributed. However, the quantity that is usually regressed in aerosol extinction and DIAL calculations is not normally distributed. A technique is presented that allows the required numerical derivative to be determined by regressing only normally distributed data. The results from this technique are compared with the usual procedure. The same concerns raised here regarding appropriate choice of a model in the context of aerosol extinction calculations should apply to DIAL calculations of absorbing species such as water vapor or ozone as well because the numerical derivative that is required is identical.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Validation of the Raman lidar algorithm for quantifying aerosol extinction

Felicita Russo, David N. Whiteman, Belay Demoz, and Raymond M. Hoff
Appl. Opt. 45(27) 7073-7088 (2006)

Improvements of the aerosol algorithm in ozone lidar data processing by use of evolutionary strategies

Holger Eisele and Thomas Trickl
Appl. Opt. 44(13) 2638-2651 (2005)

Ill-posed retrieval of aerosol extinction coefficient profiles from Raman lidar data by regularization

Pornsarp Pornsawad, Christine Böckmann, Christoph Ritter, and Mathias Rafler
Appl. Opt. 47(10) 1649-1661 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved