OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 19 — Jul. 1, 1999
  • pp: 4125–4136

Optical Characterization of a Compact Multilayer-Mirror Polarimeter in the Extreme-Ultraviolet Range

Matthew Bailey, Hocine Merabet, and Reinhard F. Bruch  »View Author Affiliations

Applied Optics, Vol. 38, Issue 19, pp. 4125-4136 (1999)

View Full Text Article

Acrobat PDF (196 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A molybdenum–silicon (Mo/Si) multilayer-mirror (MLM) polarimeter has been constructed and used to analyze the extreme-ultraviolet (EUV) emission from excited HeI and HeII states following electron impact on He for wavelengths ranging from approximately 256 to 584 Å. A ratio of reflectivities for <i>s</i>- and <i>p</i>-polarized light, <i>R</i><sub><i>s</i></sub>:<i>R</i><sub><i>p</i></sub> ≈, and a resolving power of λ/Δλ ≈ 6 at 304 Å were obtained. These characteristics and the use of a VYNS (a copolymer material composed of 90% vinyl chloride and 10% vinyl acetate) spectral filter were sufficient to allow a detailed polarization study of the first two members of the Lyman series of He<sup>+</sup> at wavelengths of 304 Å (HeII <i>p</i> → <i>s</i>) and 256 Å (HeII <i>p</i> → <i>s</i>) for impact-electron energies ranging from threshold to 1500 eV. The MLM has also been used as a single flat-surface mirror polarimeter for the analysis of longer-wavelength radiation (517 to 584 Å) from the (<i>snp</i>) <sup>1</sup><i>P</i><sup><i>o</i></sup> → (1<i>s</i><sup>2</sup>) <sup>1</sup><i>S</i> series of neutral He with <i>R</i><sub><i>s</i></sub>/<i>R</i><sub><i>p</i></sub> ≈ . Although MLM polarimeters were previously used for EUV measurements with bright photon sources such as those provided by synchrotron facilities, the results presented clearly demonstrate the feasibility of such devices with lower-intensity electron and ion impact sources. The compact design of the apparatus makes it suitable as a portable measurement and calibration device.

© 1999 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.4040) Optical devices : Mirrors
(230.4170) Optical devices : Multilayers
(230.5440) Optical devices : Polarization-selective devices
(300.2140) Spectroscopy : Emission

Matthew Bailey, Hocine Merabet, and Reinhard F. Bruch, "Optical Characterization of a Compact Multilayer-Mirror Polarimeter in the Extreme-Ultraviolet Range," Appl. Opt. 38, 4125-4136 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. H. McGuire, Electron Correlation Dynamics In Atomic Collisions (Cambridge U. Press, Cambridge, 1997).
  2. J. H. McGuire, “Multiple-electron excitation, ionization, and transfer in high-velocity atomic and molecular collisions,” Adv. At. Mol. Opt. Phys. 29, 217–315 (1992).
  3. R. Hippler and K. H. Schartner, “Absolute cross sections for the excitation of n 1 P o-levels of helium by proton impact (150–100 keV),” J. Phys. B 7, 618–625 (1974).
  4. F. G. Donaldson, M. A. Hender, and J. W. McConkey, “Vacuum ultraviolet measurements of the electron impact excitation of helium,” J. Phys. B 5, 1192–1210 (1972).
  5. W. B. Westerveld, H. G. M. Heideman, and J. van Eck, “Electron impact excitation of 1 1 S → 2 1 P and 1 1 S → 3 1 P of helium: excitation cross sections and polarization fractions obtained from XUV radiation,” J. Phys. B 12, 115–135 (1979).
  6. J. L. Forand, K. Becker, and J. W. McConkey, “Absolute electron impact emission cross section of the He+ 2 2 P → 1 2 S line at 304 Å produced by simultaneous ionization–excitation,” J. Phys. B 18, 1409–1418 (1985).
  7. M. Eminyan, K. B. MacAdam, J. Slevin, and H. Kleinpoppen, “Electron-photon angular correlations in electron–helium collisions: measurements of complex excitation amplitudes, atomic orientation and alignment,” J. Phys. B. At. Mol. Phys. 7, 1519–1530 (1974).
  8. R. Bruch, H. Merabet, M. Bailey, S. Showers, and D. Schneider, “Development of x-ray and extreme ultraviolet (EUV) optical devices for diagnostics and instrumentation for various surface applications,” Surface Interface Anal. (in press).
  9. E. S. Gluskin, “A universal polarimeter for the soft x-ray and vacuum ultraviolet wavelength region,” Rev. Sci. Instrum. 63, 1523–1524 (1992).
  10. J. H. Underwood, E. M. Gullikson, and K. Nguyen, “Tarnishing of Mo/Si multilayer x-ray mirrors,” Appl. Opt. 32, 6985–6990 (1993).
  11. M. Bailey, “A polarization study of the extreme ultraviolet emission from helium following electron impact utilyzing a multilayer mirror polarimeter,” Ph.D. dissertation (University of Nevada, Reno, Nev., 1997).
  12. Y. Platonov, Osmic, Inc., 1788 Northwood Drive, Troy, Mich. 48084 (personal communication, 2 February 1998).
  13. A. Götz, W. Mehlhorn, A. Raeker, and K. Bartschat, “Ionization–excitation of He atoms by electron impact: alignment of He+ (2p 2 P),” J. Phys. B At. Mol. Opt. Phys. 29, 4699–4708 (1996).
  14. A. Götz, “Alignment of He+ (2p 2 P3/2) electron impact ionization close to threshold,” Ph.D. dissertation (University of Freiburg, Germany, 1995).
  15. P. Dhez, “Polarizers and polarimeters in the X-UV range,” Nucl. Instrum. Methods A 261, 66–71 (1987).
  16. J. C. Davis, A. L. Oren, J. Uejio, H. T. Yamada, E. M. Gullikson, and B. L. Henke, Small Computer Programs for the MPD and EOM Characterization of Multilayers (Lawrence Berkeley Laboratory, Berkeley, Calif., 1993).
  17. J. B. Kortright, H. Kimura, V. Nikitin, K. Mayama, M. Yamamoto, and M. Yanagihara, “Soft x-ray (97-eV) phase retardation using transmission multilayers,” Appl. Phys. Lett. 60, 2963–2968 (1992).
  18. J. B. Kortright and J. H. Underwood, “Multilayer optical elements for generation and analysis of circularly polarized x-rays,” Nucl. Instrum. Methods Phys. Res. A 291, 272–277 (1990).
  19. T. Koide, T. Shidara, M. Yuri, N. Kandaka, H. Fugutani, K. Yamaguchi, “Elliptical-polarization measurements in the vacuum ultraviolet and soft x-ray regions with a reflection polarimeter,” Rev. Sci. Instrum. 63, 1458–1461 (1992).
  20. E. M. Gullikson, J. H. Underwood, P. Batson, and V. Nikitin, “A soft x-ray/EUV reflectometer based on a laser produced plasma source,” J. X-Ray Sci. Technol. 3, 283–299 (1992).
  21. G. D. Waddill, J. G. Tobin, X. Guo, and S. Y. Tong, “Probing surface and thin film magnetic structure with circularly polarized synchrotron radiation,” J. Vac. Sci. Technol. B 14, 3152–3159 (1996).
  22. J. G. Tobin, K. W. Goodman, F. O. Schumann, R. F. Willis, J. B. Kortright, J. D. Denlinger, E. Rotenberg, A. Warwick, and N. V. Smith, “Generalized description of magnetic x-ray circular dichroism in Fe 3p photoelectron emission,” J. Vac. Sci. Technol. A 15, 1766–1769 (1997).
  23. R. Bruch, H. Merabet, M. Bailey, and A. Shevelko, “Measurement of the degree of the polarization for the radiative decay of He+ (np) (n = 2 and 3) and He (1snp) 1 P o states following electron impact on He: application of accelerators in research and industry,” in Proceedings of the Fourteenth International Conference (American Institute of Physics, New York, 1999).
  24. M. Bailey, R. Bruch, A. Shevelko, and A. Vasilyev, “Characteristics of a multilayer mirror polarimeter for measurements at extreme ultraviolet wavelength,” Rev. Sci. Instrum. 68, 1051–1054 (1997).
  25. M. Bailey, H. Merabet, R. Bruch, and A. Shevelko, “A fully characterized multilayer mirror (MLM) polarimeter in the EUV range for accelerator based atomic and surface collision experiments: application of accelerators in research and industry,” in Proceedings of the Fourteenth International Conference (American Institute of Physics, New York, 1999).
  26. I. C. Percival and M. J. Seaton, “The polarization of atomic line radiation excited by electron impact,” Philos. Trans. R. Soc. London Ser. A 251, 113–130 (1958).
  27. W. Mehlhorn, “On the polarization of characteristic x radiation,” Phys. Lett. A 26, 166–168 (1968).
  28. H. Merabet, R. Bruch, M. Bailey, D. V. Fursa, I. Bray, J. W. McConkey, and P. Hammond, “A polarization study of the extreme ultraviolet emission from helium following electron impact,” Phys. Rev. A (submitted for publication).
  29. S. P. Regan, K. B. Fournier, M. J. May, V. Soukhanovskii, M. Finkenthal, and H. W. Moos, “How to beat the low resolution of multilayer mirror spectra,” Rev. Sci. Instrum. 68, 1002–1008 (1997).
  30. T. W. Barbee, Jr., J. C. Rife, W. R. Hunter, M. P. Kowalski, R. G. Cruddace, and J. F. Seely, “Long-term stability of a Mo/Si multilayer structure,” Appl. Opt. 32, 4852–4854 (1993).
  31. J. H. Underwood and T. W. Barbee, Jr., “Layered synthetic microstructures as Bragg diffractors for x rays and extreme ultraviolet: theory and predicted performance,” Appl. Opt. 20, 3027–3034 (1981).
  32. M. Bailey, R. Bruch, E. Rauscher, and S. Bliman, “Cross sections for the ionization–excitation of helium by fast electrons and H+, H2+, H3+ ions: (np) 2 P o levels, n = 2–5,” J. Phys. B At. Mol. Opt. Phys. 28, 2655–2670 (1995).
  33. Union Carbide Material Safety Data Sheet (Union Carbide Chemicals and Plastics Company, Inc., Solvents and Coatings Materials Division, Danbury, Conn., 1992).
  34. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
  35. D. L. Windt, C. C. Webster, Jr., M. Scott, P. Arendt, B. Newman, R. F. Fischer, and A. B. Swartzlander, “Optical constants for thin films of Ti, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Os, Pt and Au from 24 Å to 1216 Å,” Appl. Opt. 27, 246–278 (1988).
  36. V. L. Kantsyrrev, R. Bruch, R. Phaneuf, and N. G. Publicover, “New concepts for x-ray, soft x-ray, and EUV optical instrumentation including applications in spectroscopy, plasma diagnostics, and biomedical microscopy: a status report,” J. X-Ray Sci. Technol. 7, 139–158 (1997).
  37. J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).
  38. E. M. Gullikson, J. H. Underwood, P. C. Batson, and V. Nikitin, “A soft x-ray EUV reflectometer based on a laser produced plasma source,” J. X-ray Sci. Technol. 3, 283–299 (1992).
  39. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  40. J. F. Meekins, R. G. Cruddace, and H. Gursky, “Optimization of layered synthetic microstructures for broadband reflectivity at soft x-ray and EUV wavelengths,” Appl. Opt. 26, 990–994 (1987).
  41. J. E. Manson, “Light source and filters for use in the 130–280 Å region,” Appl. Opt. 12, 1394–1396 (1973).
  42. P. Hammond, W. Karras, A. G. McConkey, and J. W. McConkey, “Polarization of rare-gas radiation in the vacuum-ultraviolet region excited by electron impact: helium and neon,” Phys. Rev. A 40, 1804–1810 (1989).
  43. A. Khandar-Sahabad and P. Dhez, “Multilayer x-ray polarizers,” in Application of Thin-Film Multilayered Structures to Figured X-Ray Optics, G. F. Marshall, ed., Proc. SPIE 563, 158–163 (1985).
  44. C. Norén, W. L. Karras, J. W. McConkey, and P. Hammond, “Polarization studies of rare-gas resonance radiation: argon, krypton, and xenon,” Phys. Rev. A 54, 510–521 (1996).
  45. D. W. O. Heddle, R. G. W. Keesing, and R. D. Watkins, “High-resolution studies of electron excitation, III. Polarization near threshold of light from the 4D states of helium,” Proc. R. Soc. London A 337, 443–450 (1974).
  46. D. W. O. Heddle, R. G. W. Keesing, and A. Parkin, “High-resolution studies of electron excitation, IV. The n = 3 states of helium,” Proc. R. Soc. London A 352, 419–428 (1977).
  47. C. H. Greene and A. R. P. Rau, “Effect of symmetry on two-electron escape at threshold,” J. Phys. B 16, 99–106 (1983).
  48. H. Klar and W. Schlecht, “Threshold multiple ionization of atoms. Energy dependence for double and triple escape,” J. Phys. B 9, 1699–1711 (1976).
  49. P. L. Altick and T. Rösel, “Model-independent parameters for triply differential electron impact ionization cross sections at low energies,” J. Phys. B 21, 2635–2644 (1988).
  50. M. Dogan, A. Crowe, K. Bartschat, and P. J. Marchalant, “Simultaneous excitation–ionization of helium to the He+ (2p) state,” J. Phys. B 31, 1611–1624 (1998).
  51. P. A. Hayes and J. F. Williams, “Simultaneous ionization and excitation to the He+ 2 2 P state,” Phys. Rev. Lett. 77, 3098–3101 (1996).
  52. C. Norén, J. W. McConkey, P. Hammond, and K. Bartschat, “Near-threshold study of the polarization of He resonance radiation using an energy-selected electron beam,” Phys. Rev. A 53, 1559–1566 (1996).
  53. N. J. Mason and W. R. Newell, “Total cross section for metastable excitation in the rare gases,” J. Phys. B 20, 1357–1377 (1987).
  54. S. C. McFarlane, “A Bethe theory for the polarization of impact radiation,” J. Phys. B 7, 1756–1771 (1974).
  55. R. Bruch, N. Afanasyeva, P. Kano, and D. Schneider, “Surface spectroscopy of nano- and subnano structures,” Nanotechnology 9, 346–351 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited