OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 2 — Jan. 10, 1999
  • pp: 352–356

Highly Corrected Close-Packed Microlens Arrays and Moth-Eye Structuring on Curved Surfaces

Kenneth M. Baker  »View Author Affiliations


Applied Optics, Vol. 38, Issue 2, pp. 352-356 (1999)
http://dx.doi.org/10.1364/AO.38.000352


View Full Text Article

Acrobat PDF (340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The fabrication of near-micrometer-sized close-packed coherent microlens arrays on spheric or aspheric surfaces has been accomplished by use of a compact holographic projector system that was developed for producing multimicrometer down to submicrometer grid patterning on curved surfaces. The microlens arrays, which can be utilized as moth-eye relief structures, are formed in a photoimageable bisbenzocyclobutene polymeric resin by a photolytic process involving standing-wave interference patterns from the holographic projector system. Because of absorption, each integral microlenslet of the finished arrays possesses a near-paraboloid contour. The trajectories of the meridional rays from each microlenslet can be optimized to intersect at either a single point or a locus of points.

© 1999 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(110.3960) Imaging systems : Microlithography
(220.4610) Optical design and fabrication : Optical fabrication
(350.3950) Other areas of optics : Micro-optics

Citation
Kenneth M. Baker, "Highly Corrected Close-Packed Microlens Arrays and Moth-Eye Structuring on Curved Surfaces," Appl. Opt. 38, 352-356 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-2-352


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Hutley, R. Stevens, and D. Daly, “Microlens arrays,” Phys. World 4, (7) 27–32 (1991).
  2. R. L. de Montebello, “Wide-angle integral photography—the integram system,” in Three-Dimensional Imaging, S. A. Benton, ed., Proc. SPIE 120, 73–91 (1977).
  3. N. Davies, M. McCormick, and H. W. Lau, “Microlens arrays in integral photography and optical metrology,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri and W. B. Veldkamp, eds., Proc. SPIE 1544, 189–198 (1991).
  4. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. 58, 71–76 (1968).
  5. R. H. Anderson, “Close-up imaging of documents and displays with lens arrays,” Appl. Opt. 18, 477–484 (1979).
  6. R. H. Bellman, N. F. Borrelli, L. G. Mann, and J. M. Quintal, “Fabrication and performance of a one-to-one erect imaging microlens array for fax,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri and W. B. Veldkamp, eds., Proc. SPIE 1544, 209–217 (1991).
  7. M. W. Farn, “Microconcentrators for focal plane arrays,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri and W. B. Veldkamp, eds., Proc. SPIE 1751, 106–117 (1992).
  8. B. Platt and R. V. Shack, “Lenticular Hartmann screen,” Opt. Sci. Cent. Newsletter 5, 15 (1971).
  9. D. Kwo, G. Damas, and W. Zmek, “A Hartmann–Shack wavefront sensor using a binary optic lenslet array,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri and W. B. Veldkamp, eds., Proc. SPIE 1544, 66–76 (1991).
  10. J. S. Toeppen, W. S. Bliss, T. W. Long, and J. T. Salmon, “A video Hartmann wavefront diagnostic that incorporates a monolithic microlens array,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri and W. B. Veldkamp, eds., Proc. SPIE 1544, 218–225 (1991).
  11. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, and H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
  12. K. Nishizawa and M. Oikawa, “Micro-optics research activities in Japan,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri and W. B. Veldkamp, eds., Proc. SPIE 1751, 54–65 (1992).
  13. J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771–1773 (1988).
  14. J. R. Leger and W. C. Goltsos, “Geometric transformation of linear diode-laser arrays for longitudinal pumping of solid-state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
  15. W. Goltsos and M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
  16. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).
  17. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘moth eye’ principle,” Nature 244, 281–282 (1973).
  18. B. S. Thornton, “Limit of moth’s eye principle and other impedance-matching corrugations for solar-absorber design,” J. Opt. Soc. Am. 65, 267–270 (1975).
  19. S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
  20. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8, 549–553 (1991).
  21. D. H. Raguin and G. M. Morris, “Antireflection-structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993).
  22. J. F. DeNatale, P. J. Hood, J. F. Flintoff, and A. B. Harker, “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. Appl. Phys. 71, 1388–1393 (1992).
  23. A. B. Harker and J. F. DeNatale, “Diamond gradient index ‘moth-eye’ antireflection surfaces for LWIR windows,” in Window and Dome Technologies and Materials III, P. Klocek, ed., Proc. SPIE 1760, 261–267 (1992).
  24. A. B. Harker, J. F. DeNatale, P. J. Hood, and J. F. Flintoff, “Method of fabricating of diamond moth-eye surface,” U.S. patent 5,334,342 (2 August 1994).
  25. E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, and T. Nakagiri, “A 10-in. surface-conduction electron-emitter display,” in Digest of Technical Papers, J. Morreale, ed. (Society for Information Display, San Jose, Calif., 1997), Vol. XXVIII, pp. 52–55.
  26. J. P. Spallas, A. M. Hawryluk, and D. R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
  27. X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of submicrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).
  28. J. J. Cowan, “The recording and large scale replication of crossed holographic grating arrays using multiple beam interferometry,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings, and Moiré Phenomena II, J. M. Lerner, ed., Proc. SPIE 503, 120–129 (1984).
  29. J. J. Cowan, “The holographic honeycomb microlens,” in Applications of Holography, L. Huff, ed., Proc. SPIE 523, 251–259 (1985).
  30. J. J. Cowan, “Method and apparatus for exposing photosensitive material,” U.S. patent 4,496,216 (29 January 1985).
  31. W. Jiang, D. L. Shealy, and K. M. Baker, “Development and testing of a holographic projection system,” Appl. Opt. 35, 5994–5998 (1996).
  32. K. M. Baker, “Highly corrected submicrometer grid patterning on curved surfaces,” Appl. Opt. 38, 339–351 (1999).
  33. Processing Guide for Photo-Imageable BCB (The Dow Chemical Company, 2030 Dow Center, Midland, Mich., 48674, 1995).
  34. C. F. Kane and R. R. Krchnavek, “Photodefinable benzocyclobutene as an optical waveguide material,” in Optical Interconnects II, R. T. Chen and J. A. Neff, eds., Proc. SPIE 2153, 200–207 (1994).
  35. K. Mersereau, C. R. Nijander, A. Y. Feldblum, and W. P. Townsend, “Fabrication and measurement of fused silica microlens arrays,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri and W. B. Veldkamp, eds., Proc. SPIE 1751, 229–233 (1992).
  36. Gentec, Inc., Electro-Optics Division, 2625 Dalton Street, Sainte-Foy, Quebec G1P 3S9, Canada.
  37. J. J. Cowan, A. M. Gerber, and W. D. Slafer, “Method for producing a surface relief pattern,” U.S. patent 4,402,571 (6 September 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited