OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 2 — Jan. 10, 1999
  • pp: 357–369

All-digital ring-wedge detector applied to fingerprint recognition

David M. Berfanger and Nicholas George  »View Author Affiliations

Applied Optics, Vol. 38, Issue 2, pp. 357-369 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (1079 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An all-digital ring-wedge detector system is presented that simulates the analog multielement array commonly used in coherent optoelectronic processors. The system is applicable with either hard-copy or digital imagery. Using neural-network software, we demonstrate high accuracy for the recognition of fingerprints, including both orientation and wide-scale size-independent sortings by using ring-only and wedge-only input neurons, respectively. Also, the system is applied on windowed subregions of fingerprint imagery, providing a feature set that summarizes localized information about spatial-frequency content and edge-angle correlations. Examples are presented in which this localized spatial-frequency information is used to produce local ridge-orientation maps and to detect regions of poor print quality. In summary, both direct-image data and spatial-transform data are found to be important.

© 1999 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.5010) Image processing : Pattern recognition
(100.5760) Image processing : Rotation-invariant pattern recognition
(200.4260) Optics in computing : Neural networks
(350.6980) Other areas of optics : Transforms

Original Manuscript: May 8, 1998
Revised Manuscript: August 28, 1998
Published: January 10, 1999

David M. Berfanger and Nicholas George, "All-digital ring-wedge detector applied to fingerprint recognition," Appl. Opt. 38, 357-369 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Federal Bureau of Investigation, The Science of Fingerprints (U.S. Government Printing Office, Washington, D.C., 1984).
  2. H. Matsumoto, S. Narita, M. Ishii, A. Nishiyama, N. Senuma, H. Nohmi, K. Kiji, Y. Hoshino, K. Asai, K. Shoha, “Exclusive use equipment,” Nippon Electr. Co. Res. Dev. 96, 143–159 (1990).
  3. P. R. Vizcaya, L. A. Gerhardt, “A nonlinear orientation model for global description of fingerprints,” Pattern Recogn. 29, 1221–1231 (1996). [CrossRef]
  4. K. Sasakawa, F. Isogai, S. Ikebata, “Personal verification system with high tolerance of poor quality fingerprints,” in Machine Vision Systems Integration in Industry, B. G. Batchelor, F. W. Waltz, eds., Proc. SPIE1386, 265–272 (1990). [CrossRef]
  5. F. T. Gamble, L. M. Frye, D. R. Grieser, “Real-time fingerprint verification system,” Appl. Opt. 31, 652–655 (1992). [CrossRef] [PubMed]
  6. P. Baldi, Y. Chauvin, “Neural networks for fingerprint recognition,” Neural Computa. 5, 402–418 (1993). [CrossRef]
  7. E. Kaymaz, S. Mitra, “Analysis and matching of degraded and noisy fingerprints,” in Applications of Digital Image Processing XV, A. G. Tescher, ed., Proc. SPIE1771, 498–509 (1992). [CrossRef]
  8. M. Kamijo, H. Mieno, K. Kojima, “Classification of fingerprint images using a neural network,” Syst. Comput. Jpn. 23, 89–101 (1992). [CrossRef]
  9. Q. Lin, R. S. Nutter, “A new architecture for automatic fingerprint matching using neural networks as a feature finder and matcher,” in Applications and Science of Artificial Neural Networks, S. K. Rogers, D. W. Ruck, eds., Proc. SPIE2492, 612–623 (1995). [CrossRef]
  10. T. Hopper, C. M. Brislawn, J. N. Bradley, “WSQ gray-scale fingerprint image compression specification,” (Criminal Justice Information Services, Washington, D.C., 1993).
  11. B. G. Sherlock, D. M. Monro, “Optimized wavelets for fingerprint compression,” in 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Proceedings (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1447–1450. [CrossRef]
  12. T. F. Krile, J. F. Walkup, “Enhancement of fingerprints using digital and optical techniques,” in Image Analysis Applications, R. Kasturi, M. M. Trived, eds. (Marcel Dekker, Inc., New York, 1990), pp. 343–371.
  13. L. O’Gorman, J. V. Nickerson, “An approach to fingerprint filter design,” Pattern Recogn. 22, 29–38 (1989). [CrossRef]
  14. B. G. Sherlock, D. M. Monro, K. Millard, “Fingerprint enhancement by directional Fourier filtering,” Proc. IEE 141, 87–94 (1994).
  15. N. George, J. T. Thomasson, A. Spindel, “Photodetector light pattern detector,” U.S. patent3,689,772 (5September1972).
  16. N. George, S.-G. Wang, D. L. Venable, “Pattern recognition using the ring-wedge photodetector and neural-network software,” in Optical Pattern Recognition II, H. J. Caufield, ed., Proc. SPIE1134, 96–106 (1989). [CrossRef]
  17. L. Coetzee, E. C. Botha, “Fingerprint recognition in low quality images,” Pattern Recogn. 26, 1441–1460 (1993). [CrossRef]
  18. N. George, S.-G. Wang, “Neural networks applied to diffraction-pattern sampling,” Appl. Opt. 33, 3127–3134 (1994). [CrossRef] [PubMed]
  19. Z. Chen, Y. Sun, Y. Zhang, G. Mu, “Hybrid optical/digital access control using fingerprint identification,” Opt. Eng. 34, 834–839 (1995). [CrossRef]
  20. R. K. O’Toole, H. Stark, “Comparative study of optical-digital vs. all-digital techniques in textural pattern recognition,” Appl. Opt. 19, 2496–2506 (1980). [CrossRef]
  21. M. S. Brown, “A multifaceted holographic field lens for diffraction pattern sampling,” Opt. Acta 31, 507–513 (1984). [CrossRef]
  22. M. J. Simpson, “Diffraction pattern sampling using a holographic optical element in an imaging configuration,” Appl. Opt. 26, 1786–1791 (1987). [CrossRef] [PubMed]
  23. D. Clark, D. P. Casasent, “Practical optical Fourier analysis for high speed inspection,” Opt. Eng. 27, 365–371 (1988). [CrossRef]
  24. A. D. Kulkarni, P. Byars, “Artificial neural network models for image understanding,” in Image Processing Algorithms and Techniques II, M. R. Civanlar, S. K. Mitra, R. J. Moorhead, eds., Proc. SPIE1452, 512–522 (1991). [CrossRef]
  25. A. D. Kulkarni, P. Byars, “Artificial neural network models for texture classification via the Radon transform,” in Intelligent Robots and Computer Vision X, D. P. Casasent, ed., Proc. SPIE1608, 518–525 (1991).
  26. S.-G. Wang, N. George, “Facial recognition using image and transform representations,” presented at the 1991 Optical Society of America Annual Meeting, San Jose, Calif., 3–8.
  27. J. Ohta, J. Sharpe, K. Johnson, “An optoelectronic smart detector array for the classification of fingerprints,” Opt. Commun. 111, 451–458 (1994). [CrossRef]
  28. M. O. Freeman, A. Fedor, B. Bock, K. Duell, “Optical wavelet processor for producing spatially localized ring-wedge-type information,” in Optical Information Processing Systems and Architectures IV, B. Javidi, ed., Proc. SPIE1772, 241–250 (1992). [CrossRef]
  29. M. Kawagoe, A. Tojo, “Fingerprint pattern classification,” Pattern Recogn. 17, 295–303 (1984). [CrossRef]
  30. N. K. Ratha, S. Chen, A. K. Jain, “Adaptive flow orientation-based feature extraction in fingerprint images,” Pattern Recogn. 28, 1657–1672 (1995). [CrossRef]
  31. V. S. Srinivasan, N. N. Murthy, “Detection of singular points in fingerprint images,” Pattern Recogn. 25, 139–153 (1992). [CrossRef]
  32. G. T. Candela, P. J. Grother, C. I. Watson, R. A. Wilkinson, C. L. Wilson, PCASYS (pattern-level classification automation system) public domain software, V. 23-1.1 (National Institute of Standards and Technology, Gaithersburg, Md., 1995).
  33. J. Beyer, C. Lake, R. Lougheed, “Ridge flow determination in fingerprint images,” in 22nd AIPR Workshop: Interdisciplinary Computer Vision: Applications and Changing Needs, J. M. Selander, ed., Proc. SPIE2103, 32–43 (1993). [CrossRef]
  34. D. H. McMahon, G. L. Johnson, S. L. Teeter, C. G. Whitney, “A hybrid optical computer processing technique for fingerprint identification,” IEEE Trans. Comput. C-24, 358–369 (1975). [CrossRef]
  35. A. Shmurun, V. Bjorn, S. Tam, M. Holler, “Extraction of fingerprint orientation maps using a radial basis function recognition accelerator,” in 1994 IEEE International Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1994), Vol. 2, pp. 1186–1190.
  36. F. A. P. Soares, R. Seara, O. J. Tobias, “Neural network applied to direction map extraction in fingerprint images,” in Applications and Science of Artificial Neural Networks, S. K. Rogers, D. W. Ruck, eds., Proc. SPIE2492, 884–891 (1995). [CrossRef]
  37. M. R. Lynch, R. G. Gaunt, “Applications of linear weight neural networks to fingerprint recognition,” in Fourth International Conference on Artificial Neural Networks (Institution of Electrical Engineers, Cambridge, UK, 1995), pp. 139–142. [CrossRef]
  38. J. M. Trenkle, “Region of interest detection for fingerprint classification,” in 22nd AIPR Workshop: Interdisciplinary Computer Vision: Applications and Changing Needs, J. M. Selander, ed., Proc. SPIE2103, 48–59 (1994). [CrossRef]
  39. T. Kanaoka, M. Watanabe, Y. Hamamoto, S. Tomita, “On a criterion for fingerprint image quality using the autocorrelation,” Trans. Inst. Electron. Inform. Commun. Eng. 72, 698–701 (1989).
  40. J. A. Parker, R. V. Kenyon, D. E. Troxel, “Comparison of interpolating methods for image resampling,” IEEE Trans. Med. Imaging MI-2, 31–39 (1983). [CrossRef]
  41. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1995).
  42. C. G. Looney, “Advances in feedforward neural networks: demystifying knowledge acquiring black boxes,” IEEE Trans. Knowl. Data Eng. 8, 211–226 (1996). [CrossRef]
  43. B. D. Ripley, Pattern Recognition and Neural Networks (Cambridge U. Press, Cambridge, 1996).
  44. D. E. Rumelhart, J. L. McClellandthe PDP Research Group, Parallel Distributed Processing (MIT Press, Cambridge, Mass., 1988), Vols. 1 and 2.
  45. NeuralWorks Professional II/PLUS neural-network software, V. 5.30 (Neural Ware, Inc., Sewickley, Pa., 1988).
  46. H. Demuth, M. Beale, MatLab Neural-Network Application Toolbox, V. 2.0B (Math Works, Natick, Mass., 1994).
  47. C. Charalambous, “Conjugate gradient algorithm for efficient training of artificial neural networks,” Proc. IEEE 139, 301–310 (1992).
  48. J. L. Blue, P. J. Grother, “Training feed-forward neural networks using conjugate gradients,” in Machine Vision Applications in Character Recognition and Industrial Inspection, D. P. D’Amato, ed., Proc. SPIE1661, 179–190 (1992). [CrossRef]
  49. M. R. Hestenes, Conjugate Direction Methods in Optimization (Springer-Verlag, New York, 1980). [CrossRef]
  50. T. Masters, Practical Neural Network Recipes in C++ (Academic, New York, 1993).
  51. S. T. Welstead, Neural Network and Fuzzy Logic Application in C/C++ (Wiley, New York, 1994).
  52. C. I. Watson, C. L. Wilson, NIST Special Database 4, fingerprint database (National Institute of Standards and Technology, Gaithersburg, Md., 1992).
  53. A. K. Jain, L. Hong, S. Pankanti, R. Bolle, “An identity-authentication system using fingerprints,” Proc. IEEE 85, 1365–1388 (1997). [CrossRef]
  54. S. C. A. Thomopoulos, Ver-i-Fus fingerprint access control systems (Intelnet, State College, Pa., 1998).
  55. FIDS fingerprint identification system (Jasper Consulting, Bemidji, Minn., 1998).
  56. E. H. Linfoot, Fourier Methods in Optical Image Evaluation (Focal Press, London, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited