Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO

Not Accessible

Your library or personal account may give you access

Abstract

Trace concentrations of 1,4-dinitrobenzene (DNB) are detected by a combination of laser photolysis and laser-induced fluorescence. A one-color laser is applied to induce DNB photodissociation and for subsequent detection of NO photofragments by excitation and emission through A(v′ = 0) ← X(v″ = 0 - 2) and A(v′ = 0) → X(v″ = 0, 1) transitions, respectively. The resulting NO rovibrational excitation spectra serve as markers for the presence of DNB. The NO is produced in vibrational ground and excited states with peak height ratios of (v″ = 0):(v″ = 1):(v″ = 2) = 1:0.5:0.13. The limits of detection of DNB mixed with 100 or 500 Torr of air with v″ = 2 excitation at 248 nm are 13 and 11 parts in 109 by weight, respectively, for a 30-s integration time. The application of this scheme for DNB detection has the advantage that no ambient ground state NO interferes and that the fluorescence is collected at shorter wavelengths than the exciting radiation, precluding background fluorescence.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser photofragmentation–fragment detection and pyrolysis–laser-induced fluorescence studies on energetic materials

Vaidhianat Swayambunathan, Gurbax Singh, and Rosario C. Sausa
Appl. Opt. 38(30) 6447-6454 (1999)

Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation

C. M. Wynn, S. Palmacci, R. R. Kunz, K. Clow, and M. Rothschild
Appl. Opt. 47(31) 5767-5776 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.