Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Absorption distribution of an optical beam focused into a turbid medium

Not Accessible

Your library or personal account may give you access

Abstract

The focusing of light into a turbid medium was studied with Monte Carlo simulations. Focusing was found to have a significant effect on the absorption distribution in turbid media when the depth of the focal point (the distance between the focal point and the surface of the turbid media) was less than or comparable with the transport mean free path. Focusing could significantly increase the peak absorption and narrow the absorption distribution. As the depth of the focal point increased, the peak absorption decreased, and the depth of peak absorption increased initially but quickly reached a plateau that was less than the transport mean free path. A refractive-index-mismatched boundary between the ambient medium and the turbid medium deteriorated the focusing effect, increased the absorption near the boundary, lowered the peak absorption, and broadened the absorption distribution.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Rapid modeling of diffuse reflectance of light in turbid slabs

Lihong V. Wang
J. Opt. Soc. Am. A 15(4) 936-944 (1998)

Modeling focusing Gaussian beams in a turbid medium with Monte Carlo simulations

Brett H. Hokr, Joel N. Bixler, Gabriel Elpers, Byron Zollars, Robert J. Thomas, Vladislav V. Yakovlev, and Marlan O. Scully
Opt. Express 23(7) 8699-8705 (2015)

Monte Carlo simulation of converging laser beams propagating in biological materials

Zhi Song, Ke Dong, Xin H. Hu, and Jun Q. Lu
Appl. Opt. 38(13) 2944-2949 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved