OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 24 — Aug. 20, 1999
  • pp: 5127–5132

Near band-edge field-dependent absorption coefficient and refractive index determined by photocurrent and transmittance measurements

Ming G. Xu, John M. Dell, John F. Siliquini, and Prashant Chavarkar  »View Author Affiliations

Applied Optics, Vol. 38, Issue 24, pp. 5127-5132 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (170 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A technique is proposed for the extraction of precise values of field-dependent absorption coefficient α and refractive index n from photocurrent and transmittance measurements of optical modulator structures. The technique uses approximate results of α and n extracted from a simplified device as the initial input into an iterative procedure that utilizes the consistency between α and n to obtain successively better estimates of these parameters. The technique was applied to results that were measured experimentally, and we verified the accuracy by using synthetic data. Errors caused by measurement inaccuracy are also investigated. It is shown that the absorption coefficient has a modest sensitivity whereas the refractive index is insensitive to these errors.

© 1999 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(230.2090) Optical devices : Electro-optical devices
(230.4110) Optical devices : Modulators
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(310.6860) Thin films : Thin films, optical properties

Original Manuscript: September 18, 1998
Revised Manuscript: May 17, 1999
Published: August 20, 1999

Ming G. Xu, John M. Dell, John F. Siliquini, and Prashant Chavarkar, "Near band-edge field-dependent absorption coefficient and refractive index determined by photocurrent and transmittance measurements," Appl. Opt. 38, 5127-5132 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Yan, R. J. Simes, L. A. Coldren, “Analysis and design of surface-normal Fabry–Perot electrooptic modulators,” IEEE J. Quantum Electron. 25, 2272–2280 (1989). [CrossRef]
  2. K. K. Law, J. L. Merz, L. A. Coldren, “Superlattice surface-normal asymmetric Fabry–Perot reflection modulators: optical modulation and switching,” IEEE J. Quantum Electron. 29, 727–740 (1993). [CrossRef]
  3. J. Maserjian, P. O. Andersson, B. R. Hancock, J. M. Iannelli, S. T. Eng, F. J. Grunthaner, K.-K. Law, P. O. Holtz, R. J. Simes, L. A. Coldren, A. C. Gossard, J. L. Merz, “Optically addressed spatial light modulators by MBE-grown nipi MQW structures,” Appl. Opt. 28, 4801–4807 (1989). [CrossRef] [PubMed]
  4. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991).
  5. D. S. Gerber, G. N. Maracas, “A simple method for extraction of multiple quantum well absorption coefficient from reflectance and transmittance measurements,” IEEE J. Quantum Electron. 29, 2589–2595 (1993). [CrossRef]
  6. J. F. Siliquini, M. G. Xu, G. A. Umana Membreno, J. M. Dell, “Methods of measuring the electric-field-dependent absorption coefficient in quantum confined structures,” in Proceedings of the Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, New York, 1997), pp. 293–296.
  7. B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electroabsorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992). [CrossRef]
  8. P. J. Stevens, M. Whitehead, G. Parry, K. Woodbridge, “Computer modeling of the electric field dependent absorption spectrum of multiple quantum well material,” IEEE J. Quantum Electron. 24, 2007–2015 (1988). [CrossRef]
  9. E. Yablonovitch, T. Gmitter, J. P. Harbison, R. Bhat, “Extreme selectivity in the lift-off epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987). [CrossRef]
  10. E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double heterostructure GaAs/AlGaAs thin film diode lasers on glass substrates,” IEEE Photon. Technol. Lett. 1, 41–42 (1989). [CrossRef]
  11. E. Yablonovitch, K. Kash, T. J. Gmitter, L. T. Florez, J. P. Harbison, E. Colas, “Regrowth of GaAs quantum wells on GaAs liftoff films ‘Van Der Waals bonded’ to silicon substrates,” Electron. Lett. 25, 171–172 (1989). [CrossRef]
  12. E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990). [CrossRef]
  13. G. W. Yoffe, J. M. Dell, “Multiple quantum well reflection modulator using a lifted-off GaAs/AlGaAs film bonded to gold on silicon,” Electron. Lett. 27, 557–558 (1991). [CrossRef]
  14. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984). [CrossRef]
  15. F. Stern, “Dispersion of the index of refraction near the absorption edge of semiconductors,” Phys. Rev. A 133, 1653–1664 (1964). [CrossRef]
  16. J. S. Weiner, D. A. B. Miller, D. S. Chemla, “Quadratic electro-optic effect due to the quantum-confined Stark effect in quantum wells,” Appl. Phys. Lett. 50, 842–844 (1987). [CrossRef]
  17. G. D. Boyd, G. Livescu, “Electro-absorption and refraction in Fabry–Perot quantum well modulators: a general discussion,” Opt. Quantum Electron. 24, S147–S165 (1992). [CrossRef]
  18. J. M. Dell, M. J. Joyce, B. F. Usher, G. W. Yoffe, P. C. Kemeny, “Unusually strong excitonic absorption in molecular-beam-epitaxy-grown, chemically lifted GaAs thin film,” Phys. Rev. B 42, 9496–9500 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited