OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 24 — Aug. 20, 1999
  • pp: 5181–5185

Resonant Waveguide-Grating Switching Device with Nonlinear Optical Material

Robert R. Boye, Richard W. Ziolkowski, and Raymond K. Kostuk  »View Author Affiliations


Applied Optics, Vol. 38, Issue 24, pp. 5181-5185 (1999)
http://dx.doi.org/10.1364/AO.38.005181


View Full Text Article

Acrobat PDF (509 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design and analysis of a dielectric guided-mode resonance filter (GMRF) utilizing a nonlinear material for the waveguide is presented. Small changes to the parameters of a GMRF have a large impact on its resonance. A nonlinear material can provide a small change in the refractive index of the waveguide, altering the resonance of the device and resulting in modulation of the transmitted and reflected output of the filter. Numerical results show that nonlinear switching from 100% transmission to 100% reflection can be accomplished with less than 100 kW/cm2 using a simple design.

© 1999 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.3120) Integrated optics : Integrated optics devices
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.0230) Optical devices : Optical devices
(230.3990) Optical devices : Micro-optical devices
(260.5740) Physical optics : Resonance

Citation
Robert R. Boye, Richard W. Ziolkowski, and Raymond K. Kostuk, "Resonant Waveguide-Grating Switching Device with Nonlinear Optical Material," Appl. Opt. 38, 5181-5185 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-24-5181


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
  2. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Stable implementation of the rigorous couple-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
  3. A. Taflove, Computational Electrodynamics (Artech House, Norwood, Mass., 1995).
  4. J. B. Judkins and R. W. Ziolkowski, “Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings,” J. Opt. Soc. Am. A 12, 1974–1983 (1995).
  5. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
  6. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
  7. L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
  8. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
  9. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
  10. S. S. Wang and R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34, 2414–2420 (1995).
  11. S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13, 993–1005 (1996).
  12. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556–1558 (1998).
  13. I. A. Avrutskii and V. A. Sychugov, “Reflection of a Gaussian light beam from the surface of a corrugated waveguide,” Sov. J. Quantum. Electron. 16, 1558–1559 (1986).
  14. M. T. Gale, K. Knop, and R. Morf, “Zero-order diffractive microstructures for security applications,” in Optical Security and Anticounterfeiting Systems, W. F. Fagan, ed., Proc. SPIE 1210, 83–89 (1990).
  15. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, “Light modulation with resonant grating-wavelength structures,” Opt. Lett. 21, 1564–1566 (1996).
  16. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980).
  17. S. Ohtsuka, T. Koyama, K. Tsunetomo, H. Nagata, and S. Tanaka, “Nonlinear optical property of CdTe microcrystallites doped glasses fabricated by laser evaporation method,” Appl. Phys. Lett. 61, 2953–2954 (1992).
  18. B. Yu, C. Zhu, H. Xia, H. Chen, and F. Gan, “Optical non-linearities of PbSe microcrystallites doped in glass,” J. Mater. Sci. Lett. 16, 2001–2004 (1997).
  19. A. Taflove, Advances in Computational Electrodynamics (Artech House, Norwood, Mass., 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited