OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 25 — Sep. 1, 1999
  • pp: 5399–5407

Conoscopic Interferometry of Surface-Acoustic-Wave Substrate Crystals

Pekka H. Äyräs, Ari T. Friberg, Matti A. J. Kaivola, and Martti M. Salomaa  »View Author Affiliations

Applied Optics, Vol. 38, Issue 25, pp. 5399-5407 (1999)

View Full Text Article

Acrobat PDF (2398 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Conoscopic interferometry is applied for determining the crystal orientation of lithium niobate and other commonly employed substrate wafers for integrated-optic and surface-acoustic-wave devices. The method is particularly applicable for detecting the orientation of the optic axes of the strongly birefringent niobate but is less sensitive for lithium tantalate or quartz. Conoscopic interference is a low-cost and easy-to-use method that is especially suitable for laboratory usage.

© 1999 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(160.3730) Materials : Lithium niobate
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence

Pekka H. Äyräs, Ari T. Friberg, Matti A. J. Kaivola, and Martti M. Salomaa, "Conoscopic Interferometry of Surface-Acoustic-Wave Substrate Crystals," Appl. Opt. 38, 5399-5407 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Feldman and J. Hénaff, Surface Acoustic Waves for Signal Processing (Artech, Boston, Mass., 1989).
  2. D. P. Morgan, Surface-Wave Devices for Signal Processing (Elsevier, Amsterdam, The Netherlands, 1991).
  3. D. S. Ballantine, R. M. White, S. J. Martin, A. J. Ricco, E. T. Zellers, G. C. Frye, and H. Wohltjen, Acoustic Wave Sensors. Theory, Design, and Physico-Chemical Applications (Academic, San Diego, Calif., 1997).
  4. M. R. P. Gibb, Jr., Optical Methods of Chemical Analysis (McGraw-Hill, New York, 1942).
  5. G. Sirat and D. Psaltis, “Conoscopic holography,” Opt. Lett. 10, 4–6 (1985).
  6. G. Y. Sirat, “Conoscopic holography. I. Basic principles and physical basis,” J. Opt. Soc. Am. A 9, 70–83 (1992); “Conoscopic holography. II. Rigorous derivation,” J. Opt. Soc. Am. A 9, 84–90 (1992).
  7. L. M. Mugnier, G. Y. Sirat, and D. Charlot, “Conoscopic holography: two-dimensional numerical reconstructions,” Opt. Lett. 18, 66–68 (1993).
  8. L. M. Mugnier and G. Y. Sirat, “Reconstruction of a three-dimensional object from its conoscopic hologram,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE 1767, 287–298 (1992).
  9. L. M. Mugnier, “Conoscopic holography: toward three-dimensional reconstructions of opaque objects,” Appl. Opt. 34, 1363–1371 (1995).
  10. D. Gava and F. Prêteux, “3D conoscopic vision,” in Statistical and Stochastic Methods in Image Processing II, F. Prêteux, J. L. Davidson, and E. R. Dougherty, eds., Proc. SPIE 3167, 196–209 (1997); “Conoscopic vision: Principle and applications to quality control,” in Proceedings of the Second International Conference on Quality Control in Artificial Vision (QCAV’97), Le Creusot, France, May 1997, pp. 86–91 (1997).
  11. L. Normie, “Conoscopy measures with high resolution,” Photon. Spectra 31, 31–32 (1997).
  12. M. J. Guardalben, “Conoscopic alignment methods for birefringent optical elements in fusion lasers,” Opt. Photon. News. 8(8), 37–39 (1997).
  13. A. R. MacGregor, “Method for computing homogeneous liquid-crystal conoscopic figures,” J. Opt. Soc. Am. A 7, 337–347 (1990).
  14. E. Gorecka, A. D. Chandani, Y. Ouchi, H. Takezoe, and A. Fukuda, “Molecular orientational structures in ferroelectric, ferrielectric and antiferroelectric smectic liquid crystal phases as studied by conoscope observation,” Jpn. J. Appl. Phys. 29, 131–137 (1990).
  15. T. Fujikawa, K. Hiraoka, T. Isozaki, K. Kajikawa, H. Takezoe, and A. Fukuda, “Construction of dynamic conoscope observation system using CCD camera and image processor,” Jpn. J. Appl. Phys. 32, 985–988 (1993).
  16. I. Mus̆evic̆, B. Z̆eks̆, R. Blinc, and Th. Rasing, “Magnetic-field-induced biaxiality in an antiferroelectric liquid crystal,” Phys. Rev. E 47, 1094–1100 (1993).
  17. J. Hatano, Y. Hanakai, H. Furue, H. Uehara, S. Saito, and K. Murashiro, “Phase sequence in smectic liquid crystals having fluorophenyl group in the core,” Jpn. J. Appl. Phys. 33, 5498–5502 (1994).
  18. S.-C. A. Lien, “Application of computer simulation to improve the optical performance of liquid crystal displays,” Opt. Eng. 32, 1762–1768 (1993).
  19. S. Jen and C. S. Hartmann, “Conoscope: an apparatus for determining the crystal orientation of SAW wafers,” in 1994 IEEE Ultrasonics Symposium, M. Levy, S. C. Schneider, and B. R. McAvoy, eds. (Institute of Electrical and Electronics Engineers, New York, 1994), pp. 397–401.
  20. P. Äyräs, A. T. Friberg, M. Kaivola, and M. M. Salomaa, “Conoscopic interferometry of wafers for surface-acoustic wave devices,” J. Appl. Phys. 82, 4039–4042 (1997).
  21. A. M. Yurek, P. G. Suchoski, S. W. Merritt, and F. J. Leonberger, “Commercial LiNbO3 integrated optic devices,” Opt. Photon. News 6(6), 26–30 (1995).
  22. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).
  23. A. Sommerfeld, Optics: Lectures on Theoretical Physics (Academic, New York, 1953), Vol. 4.
  24. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742–756 (1979).
  25. Q.-T. Liang, “Simple ray tracing formulas for uniaxial optical crystals,” Appl. Opt. 29, 1008–1010 (1990).
  26. E. Cojocaru, “Direction cosines and vectorial relations for extraordinary-wave propagation in uniaxial media,” Appl. Opt. 36, 302–306 (1997).
  27. K. Ohtsuka, H. Ara, and T. Ogawa, “A new, simple arrangement for conoscopic figures,” Jpn. J. Appl. Phys. 23, 1541–1542 (1984).
  28. X. Zhou and X. Xu, “A simple and convenient system for an optical method for crystal orientation,” Cryst. Res. Technol. 31, K9–K10 (1996).
  29. B. S. Perkalskis, “Demonstration of conoscopic pictures,” Am. J. Phys. 61, 1152 (1993).
  30. R. C. Weast, ed., Handbook of Chemistry and Physics (CRC Press, Bora Raton, Fla., 1986).
  31. Z. S. Hegedus, Z. Zelenka, and G. Gardner, “Interference patterns generated by a plane-parallel plate,” Appl. Opt. 32, 2285–2288 (1993).
  32. A. González-Cano and E. Bernabéu, “Automatic interference method for measuring transparent film thickness,” Appl. Opt. 32, 2292–2294 (1993).
  33. S. T. Yang, R. C. Eckardt, and R. L. Byer, “1.9-W cw ring-cavity KTP singly resonant optical parametric oscillator,” Opt. Lett. 19, 475–477 (1994).
  34. M. Mansuripur, “Internal conical refraction,” Opt. Photon. News. 8(6), 43–45 (1997); “External conical refraction,” 8(8), 50–52 (1997).
  35. J. Mentel, E. Schmidt, and T. Mavrudis, “Birefringent filter with arbitrary orientation of the optic axis: an analysis of improved accuracy,” Appl. Opt. 31, 5022–5029 (1992).
  36. J. Shao and J. A. Dobrowolski, “Multilayer interference filters for the far-infrared and submillimeter regions,” Appl. Opt. 32, 2361–2370 (1993).
  37. V. I. Skomorovsky, “Advance of the design and technology of birefringent filters,” in Polarization Analysis and Measurement II, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 2265, 413–421 (1994).
  38. L. Zheng, O. A. Konoplev, and D. D. Meyerhofer, “Determination of the optical-axis orientation of a uniaxial crystal by frequency-domain interferometry,” Opt. Lett. 22, 931–933 (1997).
  39. A. L. Bajor, “Application of imaging conoscope for optical inhomogeneity testing in LiNbO3 crystals and components,” in Laser Interferometry VIII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewicz, and M. Takeda, eds., Proc. SPIE 2860, 350–359 (1996).
  40. X. Chen, R. Calemczuk, B. Salce, B. Lavorel, C. Akir, and L. Rajaonah, “Long-transient conoscopic pattern technique,” Solid State Commun. 110, 431–434 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited