OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 26 — Sep. 10, 1999
  • pp: 5533–5540

High-rate–long-distance fiber-optic communication based on advanced modulation techniques

Yuval Ivankovski and David Mendlovic  »View Author Affiliations


Applied Optics, Vol. 38, Issue 26, pp. 5533-5540 (1999)
http://dx.doi.org/10.1364/AO.38.005533


View Full Text Article

Enhanced HTML    Acrobat PDF (177 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The presence of fiber attenuation and chromatic dispersion is one of the major design aspects of fiber-optic communication systems when one addresses high-rate and long-distance digital data transmission. Conventional digital communication systems implement a modulation technique that generates light pulses at the fiber input end and tries to detect them at the fiber output end. Here an advanced modulation transmission system is developed based on knowledge of the exact dispersion parameters of the fiber and the principles of space–time mathematical analogy. The information encodes the phase of the input light beam (a continuous laser beam). This phase is designed such that, when the signal is transmitted through a fiber with a given chromatic dispersion, high peak pulses emerge at the output, which follows a desired bit pattern. Thus the continuous input energy is concentrated into short time intervals in which the information needs to be represented at the output. The proposed method provides a high rate–distance product even for fibers with high dispersion parameters, high power at the output, and also unique protection properties. Theoretical analysis of the proposed method, computer simulations, and some design aspects are given.

© 1999 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4080) Fiber optics and optical communications : Modulation
(060.5060) Fiber optics and optical communications : Phase modulation
(070.2580) Fourier optics and signal processing : Paraxial wave optics

History
Original Manuscript: January 4, 1999
Revised Manuscript: May 25, 1999
Published: September 10, 1999

Citation
Yuval Ivankovski and David Mendlovic, "High-rate–long-distance fiber-optic communication based on advanced modulation techniques," Appl. Opt. 38, 5533-5540 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-26-5533

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited