OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 27 — Sep. 20, 1999
  • pp: 5838–5850

Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor

Vanessa Sherlock, Anne Garnier, Alain Hauchecorne, and Philippe Keckhut  »View Author Affiliations

Applied Optics, Vol. 38, Issue 27, pp. 5838-5850 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (177 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Implementation of a Raman lidar measurement of middle and upper tropospheric water vapor is described for a system that uses a 532-nm exciting wavelength, fiber-optic signal transfer, and Q-branch selection. Particular attention is given to the minimizatoin of systematic biases introduced by fluorescent reemission of energy associated with elastic backscatter returns. We compare lidar profiles with collocated radiosonde measurements by using the Vaisala H-Humicap capacitive captor. The variations in the water-vapor concentrations on vertical scales of the order of 1 km in the upper troposphere observed by the two instruments present significant differences. Independent characterization of random and systematic lidar measurement errors and radiosonde sensor response characteristics lead to the conclusion that these differences are due to radiosonde sensor response. These intercomparisons indicate that the lidar measurement can provide important information on water-vapor distributions in the radiatively important 8–11-km region.

© 1999 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(060.2310) Fiber optics and optical communications : Fiber optics
(260.2510) Physical optics : Fluorescence
(280.3640) Remote sensing and sensors : Lidar
(290.5860) Scattering : Scattering, Raman

Original Manuscript: December 16, 1998
Revised Manuscript: May 26, 1999
Published: September 20, 1999

Vanessa Sherlock, Anne Garnier, Alain Hauchecorne, and Philippe Keckhut, "Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor," Appl. Opt. 38, 5838-5850 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15,761–15,785 (1992). [CrossRef]
  2. A. Sinha, J. E. Harries, “Water vapor and greenhouse trapping: the role of far-infrared absorption,” Geophys. Res. Lett. 22, 2147–2150 (1995). [CrossRef]
  3. W. P. Elliot, D. J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507–1520 (1991). [CrossRef]
  4. J. Nash, F. J. Schmidlin, “Instruments and observing methods. Report 30. WMO International Radiosonde Intercomparison UK 1984, USA 1985,” (World Meteorological Organisation, Case postale 2300, Geneva, 1987).
  5. F. J. Schmidlin, “Report of the WMO radiosonde relative humidity sensor intercomparison: Phase 2, 8–26 September 1995,” (World Meteorological Organisation, Case postale 2300, Geneva, 1999).
  6. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995). [CrossRef]
  7. B. J. Soden, J. R. Lanzante, “An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor,” J. Clim. 9, 1235–1250 (1996). [CrossRef]
  8. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992). [CrossRef]
  9. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992). [CrossRef] [PubMed]
  10. G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988). [CrossRef]
  11. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998). [CrossRef]
  12. U. Leiterer, H. Dier, T. Naebert, “Improvements in radiosonde humidity profiles using RS80/RS90 radiosondes of Vaisala,” Beitr. Phys. Atmos. 70, 319–336 (1997).
  13. P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993). [CrossRef]
  14. C. M. Penney, M. Lapp, “Raman scattering cross section for water vapor,” J. Opt. Soc. Am. 66, 422–425 (1976). [CrossRef]
  15. D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993). [CrossRef]
  16. W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν2 and 2ν2,” J. Mol. Phys. 33, 1701–1714 (1977). [CrossRef]
  17. W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν1 and ν3,” J. Mol. Phys. 36, 727–732 (1978). [CrossRef]
  18. H. Inaba, T. Kobayasi, “Laser-Raman radar—laser-Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectronics 4, 101–123 (1972).
  19. V. J. Sherlock, A. Hauchecorne, J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999). [CrossRef]
  20. J. P. Dakin, A. J. King, “Limitations of a single optical fiber fluorimeter system due to background fluorescence,” IEEE Proc. 131, 273–275 (1984).
  21. S. H. Melfi, K. Evans, J. Li, D. Whiteman, R. Ferrare, G. Schwemmer, “Observation of Raman scattering by cloud droplets in the atmosphere,” Appl. Opt. 36, 3551–3559 (1997). [CrossRef] [PubMed]
  22. D. L. Snyder, M. I. Miller, Random Point Processes in Space and Time (Springer-Verlag, Berlin, 1991). [CrossRef]
  23. G. A. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, Hampton, Va., 1991).
  24. M. Weller, U. Leiterer, “Experimental data on spectral aerosol optical thickness and its global distribution,” Beitr. Phys. Atmos. 61, 1–9 (1988).
  25. B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998). [CrossRef]
  26. J. Wang, G. P. Anderson, H. E. Revercomb, R. O. Knuteson, “Validation of fascod3 and modtran3: comparison of model calculations with ground based and airborne interferometer measurements under clear-sky conditions,” Appl. Opt. 35, 6028–6040 (1996). [CrossRef] [PubMed]
  27. B. M. Lesht, J. C. Lilegren, “Comparison of precipitable water vapor measurements obtained by microwave radiometry and radiosondes at the Southern Great Plains CART site,” in Proceedings of the Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio, Tex. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1996), pp. 165–168.
  28. D. D. Turner, J. E. M. Goldsmith, “24-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. (to be published).
  29. K. Emanuel, Atmospheric Convection (Oxford University, London, 1994).
  30. D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Meywerk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997). [CrossRef]
  31. “Report of calibration,” (National Institute of Standards and Technology, Gaithersburg, Md. 20899, 1990).
  32. A. Paukkunen, “Sensor heating to enhance reliability of radiosonde humidity measurement,” (Vaisala Oy, P.O. Box 26, FIN00421 Helsinki, Finland).
  33. A. Heymsfield, National Center for Atmospheric Research, Boulder, Colo. (personal communication, July1998).
  34. C. G. Wade, “An evaluation of problems affecting the measurement of low relative humidity on the United States radiosonde,” J. Atmos. Ocean Technol. 11, 687–700 (1994). [CrossRef]
  35. J. E. Harries, “Atmospheric radiation and atmospheric humidity,” Q. J. R. Meteorol. Soc. 123, 2173–2186 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited