OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 3 — Jan. 20, 1999
  • pp: 495–504

Satellite Retrieval of Inherent Optical Properties by Inversion of an Oceanic Radiance Model: A Preliminary Algorithm

Frank E. Hoge, C. Wayne Wright, Paul E. Lyon, Robert N. Swift, and James K. Yungel  »View Author Affiliations


Applied Optics, Vol. 38, Issue 3, pp. 495-504 (1999)
http://dx.doi.org/10.1364/AO.38.000495


View Full Text Article

Acrobat PDF (214 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A previously published radiance model inversion theory has been field tested by using airborne water-leaving radiances to retrieve the chromophoric dissolved organic matter (CDOM) and detritus absorption coefficient, the phytoplankton absorption coefficient, and the total backscattering coefficient. The radiance model inversion theory was tested for potential satellite use by comparing two of the retrieved inherent optical properties with concurrent airborne laser-derived truth data. It was found that (1) matrix inversion of water-leaving radiances is well conditioned even in the presence of instrument-induced noise, (2) retrieved CDOM and detritus and phytoplankton absorption coefficients are both in reasonable agreement with absorption coefficients derived from airborne laser-induced fluorescence spectral emissions, (3) the total backscattering retrieval magnitude and variability are consistent with expected values for the Middle Atlantic Bight, and (4) the algorithm performs reasonably well in Sargasso Sea, Gulf Stream, slope, and shelf waters but is less consistent in coastal waters.

© 1999 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.3640) Remote sensing and sensors : Lidar
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Citation
Frank E. Hoge, C. Wayne Wright, Paul E. Lyon, Robert N. Swift, and James K. Yungel, "Satellite Retrieval of Inherent Optical Properties by Inversion of an Oceanic Radiance Model: A Preliminary Algorithm," Appl. Opt. 38, 495-504 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-3-495


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, and W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and the coastal zone color scanner estimates,” Appl. Opt. 22, 20–36 (1983).
  2. F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16,631–16,648 (1996).
  3. R. A. Maffione and D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36, 6057–6067 (1997).
  4. R. A. Maffione, D. R. Dana, and R. C. Honey, “Instrument for underwater measurement of optical backscatter,” in Underwater Imaging, Photography, and Visibility, R. W. Spinrad, ed., Proc. SPIE 1537, 173–184 (1991).
  5. J. H. Smart, “Empirical relationships between optical properties in the ocean,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE 1750, 276–298 (1992).
  6. R. A. Maffione, D. R. Dana, and J. M. Voss, “Spectral dependence of optical backscattering in the ocean,” presented at OSA Annual Meeting, Portland, Ore., 10–15 September 1995, Paper MDD4, p. 57.
  7. F. E. Hoge and R. N. Swift, “The influence of chlorophyll pigment upon upwelling spectral radiances from the north Atlantic Ocean: an active-passive correlation spectroscopy study,” Deep Sea Res. 40, 265–277 (1993).
  8. F. E. Hoge, R. N. Swift, and J. K. Yungel, “Oceanic radiance model development and validation: application of airborne active-passive ocean color spectral measurements,” Appl. Opt. 34, 3468–3476 (1995).
  9. F. E. Hoge, M. E. Williams, R. N. Swift, J. K. Yungel, and A. Vodacek, “Satellite retrieval of the absorption coefficient of chromophoric dissolved organic matter in continental margins,” J. Geophys. Res. 100, 24,847–24,854 (1995).
  10. M. P. F. Bristow, D. Nielsen, D. Bundy, and F. Furtek, “Use of water-Raman emission to correct airborne laser fluorosensor data for effects of water optical attenuation,” Appl. Opt. 20, 2889–2906 (1981).
  11. R. C. Smith, O. B. Brown, F. E. Hoge, K. S. Baker, R. H. Evans, R. N. Swift, and W. E. Esaias, “Multiplatform sampling (ship, aircraft, and satellite) of a Gulf Stream warm core ring,” Appl. Opt. 26, 2068–2081 (1987).
  12. J. W. Campbell and W. E. Esaias, “Spatial patterns in temperature and chlorophyll on Nantucket Shoals from airborne remote sensing data, May 7–9, 1981,” J. Mar. Res. 43, 139–161 (1985).
  13. J. W. Campbell and W. E. Esaias, “Basis for spectral curvature algorithms in remote sensing of chlorophyll,” Appl. Opt. 22, 1084–1093 (1983).
  14. J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, and R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft, and in situ perspectives of the SEEP-I Experiment,” Cont. Shelf Res. 8, 529–563 (1988).
  15. J. Martin, et al., “Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean,” Nature (London) 371, 123–129 (1994).
  16. F. E. Hoge, A. Vodacek, and N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
  17. G. M. Ferrari and S. Tassan, “On the accuracy of determining light absorption by ‘yellow substance’ through measurements of induced fluorescence,” Limnol. Oceanogr. 36, 777–786 (1991).
  18. G. M. Ferrari, M. D. Dowell, S. Grossi, and C. Targa, “Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region,” Mar. Chem. 55, 299–316 (1996).
  19. F. E. Hoge, A. Vodacek, R. N. Swift, J. K. Yungel, and N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995).
  20. W. A. Hovis and J. S. Knoll, “Characteristics of an internally illuminated calibration sphere,” Appl. Opt. 22, 4004–4007 (1983).
  21. J. L. Mueller, “The second SeaWiFS intercalibration round-robin experiment, SIRREX-2, June 1993,” NASA Tech. Memo. 104566, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994), Vol. 16.
  22. F. E. Hoge, R. N. Swift, J. K. Yungel, and A. Vodacek, “Fluorescence of dissolved organic matter: a comparison of North Pacific and North Atlantic Oceans during April 1991,” J. Geophys. Res. 98, 22,779–22,787 (1993).
  23. F. E. Hoge and R. N. Swift, “Active-passive correlation spectroscopy: a new technique for identifying ocean color algorithm spectral regions,” Appl. Opt. 25, 2571–2583 (1986).
  24. F. E. Hoge and R. N. Swift, “Phytoplankton accessory pigments: evidence for the influence of phycoerythrin on the submarine light field,” Remote Sensing Environ. 34, 19–25 (1990).
  25. F. E. Hoge and R. N. Swift, “Oil film thickness measurement using airborne laser-induced water Raman backscatter,” Appl. Opt. 19, 3269–3281 (1980).
  26. F. E. Hoge and R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt. 20, 3197–3205 (1981).
  27. F. E. Hoge and R. N. Swift, “Airborne dual laser excitation and mapping of phytoplankton photopigments in a Gulf Stream warm core ring,” Appl. Opt. 22, 2272–2281 (1983).
  28. F. E. Hoge and R. N. Swift, “Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter,” Appl. Opt. 22, 3778–3786 (1983).
  29. F. E. Hoge, R. E. Berry, and R. N. Swift, “Active-passive airborne ocean color measurement: 1. Instrumentation,” Appl. Opt. 25, 39–47 (1986).
  30. F. E. Hoge, R. N. Swift, and J. K. Yungel, “Active-passive airborne ocean color measurement: 2. Applications,” Appl. Opt. 25, 48–57 (1986).
  31. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
  32. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran, 2nd ed. (Cambridge U. Press, Port Chester, N.Y., 1992).
  33. J. Aiken, G. F. Moore, C. C. Trees, S. B. Hooker, and D. K. Clark, “The SeaWiFS CZCS-type pigment algorithm,” NASA Tech. Memo. 104566, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995), Vol. 29.
  34. S. Sathyendranath, L. Lazzara, and L. Prieur, “Variations in the spectral values of the specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1987).
  35. C. S. Roesler and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13,279–13,294 (1995).
  36. Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994).
  37. A. D. Weideman, R. H. Stavn, J. R. V. Zanefeld, and M. R. Wilcox, “Error in predicting hydrosol backscattering form remotely sensed reflectance,” J. Geophys. Res. 100, 13,163–13,177 (1995).
  38. C. S. Roesler and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13,279–13,294 (1995).
  39. N. Hoepffner and S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22,789–22,803 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited