OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 30 — Oct. 20, 1999
  • pp: 6294–6306

Vicarious calibration of the Moderate-Resolution Imaging Spectroradiometer Airborne Simulator thermal-infrared channels

Zhengming Wan, Yulin Zhang, Xialin Ma, Michael D. King, Jeffrey S. Myers, and Xiaowen Li  »View Author Affiliations

Applied Optics, Vol. 38, Issue 30, pp. 6294-6306 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (1055 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We made an experimental vicarious calibration of the Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (MAS) thermal infrared (TIR) channel data acquired in the field campaign near Mono Lake, Calif. on 10 March 1998 to demonstrate the advantage of using high-elevation sites in dry atmospheric conditions for vicarious calibration. With three lake-surface sites and one snow-field site, we estimated the MAS noise-equivalent temperature difference as 0.7–1.0 °C for bands 30–32 in the 3.68–4.13-µm region and 0.1–0.5 °C for bands 42, 45, 46, and 48 in the 8–13.5-µm region. This study shows that the MAS calibration error is within ±0.4 °C in the split-window channels (at 11 and 12 µm) and larger in other TIR channels based on the MAS data over Mono Lake and in situ measurement data over the snow-field site.

© 1999 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.5630) Instrumentation, measurement, and metrology : Radiometry

Original Manuscript: February 1, 1999
Revised Manuscript: July 19, 1999
Published: October 20, 1999

Zhengming Wan, Yulin Zhang, Xialin Ma, Michael D. King, Jeffrey S. Myers, and Xiaowen Li, "Vicarious calibration of the Moderate-Resolution Imaging Spectroradiometer Airborne Simulator thermal-infrared channels," Appl. Opt. 38, 6294-6306 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Salomonson, W. Barnes, P. Maymon, H. Montgomery, H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1989). [CrossRef]
  2. W. L. Barnes, T. S. Pagano, V. V. Salomonson, “Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1,” IEEE Trans. Geosci. Remote Sens. 36, 1088–1100 (1998). [CrossRef]
  3. M. D. King, D. D. Herring, D. J. Diner, “The Earth Observing System (EOS): a space-based program for assessing mankind’s impact on the global environment,” Opt. Photon. News 6, 34–39 (1995). [CrossRef]
  4. M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992). [CrossRef]
  5. C. O. Justice, E. Vermote, J. R. G. Townshend, R. Defries, D. O. Roy, D. K. Hall, V. V. Salomonson, J. L. Privette, G. Riggs, A. Strahler, W. Lucht, R. B. Myneni, K. Knyazikhin, S. W. Running, P. R. Nemani, Z. Wan, A. R. Huete, W. van Leeuwen, R. E. Wolfe, L. Giglio, J.-P. Muller, Y. Knyazikhin, M. J. Barnsley, “The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research,” IEEE Trans. Geosci. Remote Sens. 36, 1228–1249 (1998). [CrossRef]
  6. W. E. Esaias, M. R. Abbott, I. Barton, O. W. Brown, J. W. Campell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hoge, H. R. Gordon, W. P. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998). [CrossRef]
  7. M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996). [CrossRef]
  8. C. C. Moeller, P. S. Grant, D. D. Laporte, L. E. Gumley, P. Hajek, W. P. Menzel, J. S. Myers, S. White, “Blackbody emissivity considerations for radiometric calibration of the MODIS Airborne Simulator (MAS) thermal channels,” in Earth Observing System, W. L. Barnes, ed., Proc. SPIE2820, 44–55 (1996). [CrossRef]
  9. J. J. Butler, R. A. Barnes, “Calibration strategy for the Earth Observing System (EOS)-AM1 platform,” IEEE Trans. Geosci. Remote Sens. 36, 1056–1061 (1998). [CrossRef]
  10. P. Slater, S. F. Bigger, K. Thome, D. I. Gellman, P. R. Spyak, “Vicarious radiometric calibrations of EOS sensors,” J. Atmos. Ocean. Technol. 13, 349–359 (1996). [CrossRef]
  11. K. Thome, B. Markham, P. Slater, S. Bigger, “Radiometric calibration of Landsat,” Photogram. Eng. Remote Sens. 63, 853–858 (1997).
  12. R. Santer, X. F. Gu, G. Guyot, J. L. Deuze, C. Devaux, E. Vermote, M. Verbrugghe, “SPOT calibration at the La-Crau test site (France),” Remote Sens. Environ. 41, 227–237 (1992). [CrossRef]
  13. W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. Mckeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996). [CrossRef]
  14. S. E. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric radiance and transmission: FASCOD2,” in Proceedings of the Sixth Conference on Atmospheric Radiation, Williamsburg, Va. (American Meteorological Society, Boston, 1986), pp. 141–144.
  15. Z. Wan, J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996). [CrossRef]
  16. Z. Wan, Z.-L. Li, “A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data,” IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997). [CrossRef]
  17. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–641 (1973). [CrossRef] [PubMed]
  18. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984). [CrossRef] [PubMed]
  19. J. W. Salisbury, D. M. D’Aria, A. Wald, “Measurements of thermal infrared spectral reflectance of frost, snow, and ice,” J. Geophys. Res. B 99, 24,235–24,240 (1994). [CrossRef]
  20. A. Berk, L. S. Bemstein, D. C. Robertson, “modtran: A moderate resolution model for lowtran,” (Spectral Sciences, Burlington, Mass., 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited