OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 32 — Nov. 10, 1999
  • pp: 6749–6772

Spatial Soliton Angular Deflection Logic Gates

Steve Blair and Kelvin Wagner  »View Author Affiliations

Applied Optics, Vol. 38, Issue 32, pp. 6749-6772 (1999)

View Full Text Article

Acrobat PDF (450 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A generalized interaction geometry between orthogonally polarized optical spatial solitons is presented in which a weak signal soliton induces a small angular deflection of a stronger power supply, or pump, soliton, resulting in a spatially resolved shift of the pump at the gate output. This geometry allows for the all-optical realization of true three-terminal, inverting and restoring logic devices with gain, which can serve as building blocks for more complex logic operations. In addition, the effects of linear and nonlinear material absorption, which degrades the performance of the angular deflection gates, are considered. Even in the presence of realistic absorption, the angular deflection logic gates can still produce large-signal gain (>2) sufficient for general logic. Finally, by use of a modified gate transfer function approach, these optical logic gates are shown to possess large noise margins for robust operation.

© 1999 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(200.4660) Optics in computing : Optical logic

Steve Blair and Kelvin Wagner, "Spatial Soliton Angular Deflection Logic Gates," Appl. Opt. 38, 6749-6772 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
  2. K.-I. Kitayama, Y. Kimura, K. Okamoto, and S. Seikai, “Optical sampling using an all-fiber optical Kerr shutter,” Appl. Phys. Lett. 46, 623–625 (1985).
  3. D. A. B. Miller, S. D. Smith, and A. Johnston, “Optical bistability and signal amplification in a semiconductor crystal: applications of new low-power nonlinear effects in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
  4. S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. QE-18, 1580–1583 (1982).
  5. A. Lattes, H. A. Haus, F. J. Leonberger, and E. P. Ippen, “An ultrafast all-optical gate,” IEEE J. Quantum Electron. QE-19, 1718–1723 (1983).
  6. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 311–313 (1988).
  7. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexor (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
  8. N. S. Patel, K. L. Hall, and K. A. Rauschenbach, “40-Gbit/s cascadable all-optical logic with an ultrafast nonlinear interferometer,” Opt. Lett. 21, 1466–1468 (1996).
  9. E. Jahn, N. Agrawal, W. Pieper, H.-J. Ehrke, D. Franke, W. Fürst, and C. M. Weinert, “Monolithically integrated nonlinear Sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexor,” Electron. Lett. 32, 782–784 (1996).
  10. R. McLeod, K. Wagner, and S. Blair, “(3 + 1)-Dimensional optical soliton dragging logic,” Phys. Rev. A 52, 3254–3278 (1995).
  11. M. N. Islam, “All-optical cascadable nor gate with gain,” Opt. Lett. 15, 417–419 (1990).
  12. S. Blair, K. Wagner, and R. McLeod, “Asymmetric spatial soliton dragging,” Opt. Lett. 19, 1943–1945 (1994).
  13. M. N. Islam, “Ultrafast all-optical logic gates based on soliton trapping in fibers,” Opt. Lett. 14, 1257–1259 (1989).
  14. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I. Equal propagation amplitudes,” Opt. Lett. 12, 614–616 (1987).
  15. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes,” J. Opt. Soc. Am. B 5, 392–402 (1988).
  16. S. R. Friberg, “Soliton fusion and steering by the simultaneous launch of two different-color solitons,” Opt. Lett. 16, 1484–1486 (1991).
  17. Y. Kodama and A. Hasegawa, “Effects of initial overlap on the propagation of optical solitons at different wavelengths,” Opt. Lett. 16, 208–210 (1991).
  18. M. N. Islam, Ultrafast Fiber Switching Devices and Systems (Cambridge U. Press, Cambridge, 1992).
  19. T. Morioka, M. Saruwatari, and A. Takada, “Ultrafast optical multi/demultiplexer utilising optical Kerr effect in polarisation-maintaining single-mode fibers,” Electron. Lett. 23, 453–454 (1987).
  20. M. N. Islam, C. E. Soccolich, and D. A. B. Miller, “Low-energy ultrafast fiber soliton logic gates,” Opt. Lett. 15, 909–911 (1990).
  21. M. Shalaby and A. Barthelemy, “Experimental spatial soliton trapping and switching,” Opt. Lett. 16, 1472–1474 (1991).
  22. K. Wagner and R. McLeod, “Spatial soliton dragging gates and light bullets,” in Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 305–307.
  23. S. Blair, K. Wagner, and R. McLeod, “Material figures of merit for spatial soliton interactions in the presence of absorption,” J. Opt. Soc. Am. B 13, 2141–2153 (1996).
  24. J. U. Kang, G. I. Stegeman, and J. S. Aitchison, “One-dimensional spatial soliton dragging, trapping, and all-optical switching in AlGaAs waveguides,” Opt. Lett. 21, 189–191 (1996).
  25. E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, Mass., 1987).
  26. M. Fogiel, ed., Handbook of Mathematical, Scientific, and Engineering Formulas, Tables, Functions, Graphs, Transforms (Research and Education Association, New York, 1986).
  27. The actual numerically obtained coefficient is not exactly π2. This coefficient is used instead for simplicity.
  28. M. N. Islam, C. D. Poole, and J. P. Gordon, “Soliton trapping in birefringent optical fibers,” Opt. Lett. 14, 1011–1013 (1989).
  29. Q. Wang, P. K. A. Wai, C.-J. Chen, and C. R. Menyuk, “Soliton shadows in birefringent optical fibers,” Opt. Lett. 17, 1265–1267 (1992).
  30. D. A. B. Miller, “Device requirements for digital optical processing,” in Digital Optical Computing, Vol. CR35 of SPIE Critical Reviews (Society of Photo-Optical and Instrumentation Engineers, Bellingham, Wash., 1990), pp. 68–76.
  31. J. Millman and A. Grabel, Microelectronics, 2nd ed. (McGraw-Hill, New York, 1987).
  32. A. Barthelemy, C. Froehly, S. Maneuf, and F. Reynaud, “Experimental observation of beams’ self-deflection appearing with two-dimensional spatial soliton propagation in bulk Kerr material,” Opt. Lett. 17, 844–846 (1992).
  33. B. Crosignani, A. Cutolo, and P. DiPorto, “Coupled-mode theory of nonlinear propagation in multimode and single-mode fibers: envelope solitons and self-confinement,” J. Opt. Soc. Am. 72, 1136–1141 (1982).
  34. C. R. Menyuk, “Nonlinear pulse propagation in birefringent fibers,” IEEE J. Quantum Electron. QE-23, 174–176 (1987).
  35. S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Sov. Phys. JETP 38, 248–253 (1974).
  36. B. A. Malomed and S. Wabnitz, “Soliton annihilation and fusion from resonant inelastic collisions in birefringent optical fibers,” Opt. Lett. 16, 1388–1390 (1991).
  37. A. Villeneuve, J. U. Kang, J. S. Aitchison, and G. I. Stegeman, “Unity ratio of cross- to self-phase modulation in bulk AlGaAs and AlGaAs/GaAs MQW waveguides at half the band gap,” Appl. Phys. Lett. 67, 760–762 (1995).
  38. Q. Wang, P. Wai, C.-J. Chen, and C. R. Menyuk, “Numerical modeling of soliton-dragging logic gates,” J. Opt. Soc. Am. B 10, 2030–2039 (1993).
  39. R. McLeod, K. Wagner, and S. Blair, “Variational approach to orthogonally-polarized optical soliton interaction with cubic and quintic nonlinearities,” Phys. Scr. 59, 365–373 (1999).
  40. J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8, 596–598 (1983).
  41. L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, “Wavelength division multiplexing with solitons in ultra-long distance transmission using lumped amplifiers,” J. Lightwave Technol. 9, 362–367 (1991).
  42. S. Chakravarty, M. J. Ablowitz, J. R. Sauer, and R. B. Jenkins, “Multisoliton interactions and wavelength-division multiplexing,” Opt. Lett. 20, 136–138 (1995).
  43. S. Chi and S. Wen, “Optical soliton near zero-dispersion regime in Raman pump fiber,” Opt. Commun. 69, 334–338 (1989).
  44. P. A. Andrekson, N. A. Olsson, P. C. Becker, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and K. W. Wecht, “Observation of multiple wavelength soliton collisions in optical systems with fiber amplifiers,” Appl. Phys. Lett. 57, 1715–1717 (1990).
  45. D. R. Andersen, D. E. Hooten, J. G. A. Swartzlander, and A. E. Kaplan, “Direct measurement of the transverse velocity of dark spatial solitons,” Opt. Lett. 15, 783–785 (1990).
  46. S. R. Skinner, G. R. Allan, D. R. Anderson, and A. L. Smirl, “Dark spatial soliton propagation in bulk ZnSe,” IEEE J. Quantum Electron. 27, 2211–2219 (1991).
  47. J. P. Robinson and D. R. Anderson, “Soliton logic,” Opt. Comput. Process. 2, 57–61 (1992).
  48. T.-T. Shi and S. Chi, “Nonlinear photonic switching by using the spatial soliton collision,” Opt. Lett. 15, 1123–1125 (1990).
  49. Y. Kodama, “On solitary-wave interaction,” Phys. Lett. A 123, 276–282 (1987).
  50. X. D. Cao and D. D. Meyerhofer, “Soliton collisions in optical birefringent fibers,” J. Opt. Soc. Am. B 11, 380–385 (1994).
  51. X. D. Cao and D. D. Meyerhofer, “All-optical switching by means of collisions of spatial vector solitons,” Opt. Lett. 19, 1711–1713 (1994).
  52. F. M. Mitschke and L. F. Mollenauer, “Experimental observation of the interaction forces between solitons in optical fibers,” Opt. Lett. 12, 355–357 (1987).
  53. F. Reynaud and A. Barthelemy, “Optically controlled interaction between two fundamental soliton beams,” Europhys. Lett. 12, 401–405 (1990).
  54. J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett. 16, 15–17 (1991).
  55. J.-R. Bian and A. K. Chan, “A nonlinear all-optical switch using spatial soliton interactions,” Microwave Opt. Technol. Lett. 4, 575–580 (1991).
  56. P. A. Andrekson, N. A. Olsson, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, P. C. Becker, and K. W. Wecht, “Soliton collision interaction force dependence on wavelength separation in fibre amplifier based systems,” Electron. Lett. 26, 1499–1501 (1990).
  57. T. Aakjer, J. H. Povlsen, and K. Rottwitt, “Effects of initial overlap in a wavelength-division-multiplexed soliton transmission system,” Opt. Lett. 18, 1908–1910 (1993).
  58. R. B. Jenkins, J. R. Sauer, S. Chakravarty, and M. J. Ablowitz, “Data-dependent timing jitter in wavelength-division-multiplexing soliton systems,” Opt. Lett. 20, 1964–1966 (1995).
  59. L. Lefort and A. Barthelemy, “All-optical demultiplexing of a signal using collision and waveguiding of spatial solitons,” IEEE Photonics Technol. Lett. 9, 1364–1366 (1997).
  60. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  61. S. Blair, “Optical soliton-based logic gates,” Ph.D. dissertation (University of Colorado, Boulder, Boulder, 1998).
  62. J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
  63. M. D. Feit and J. J. A. Fleck, “Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams,” J. Opt. Soc. Am. B 5, 633–640 (1988).
  64. S. Blair and K. Wagner are preparing a manuscript to be called “Cascadable spatial soliton gates.”
  65. S. Blair and K. Wagner, “(2 + 1)-D propagation of spatio-temporal solitary waves including higher-order corrections,” Opt. Quantum Electron. 30, 697–737 (1998).
  66. A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett. 61, 147–149 (1992).
  67. R. J. Manning and G. Sherlock, “Recovery of a π phase shift in ~12.5 ps in a semiconductor laser amplifier,” Electron. Lett. 31, 307–308 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited