OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 36 — Dec. 20, 1999
  • pp: 7364–7369

Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber

George A. Nowak, Jaeyoun Kim, and Mohammed N. Islam  »View Author Affiliations

Applied Optics, Vol. 38, Issue 36, pp. 7364-7369 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (99 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By propagating 500-fs pulses through 2.5 m of standard fiber followed by 2 m of dispersion-shifted fiber, we generated >200 nm of spectral continuum between 1430 and 1630 nm, which is flat to less than ±0.5 dB over more than 60 nm. Pulses obtained by filtering the continuum show no increase in timing jitter over the source laser and are pedestal free to >28 dB, indicating excellent stability and coherence. We show that the second- and third-order dispersions of the continuum fiber and self-phase modulation are primarily responsible for the continuum generation and spectral shaping and found close agreement between simulations and experiments.

© 1999 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(190.4370) Nonlinear optics : Nonlinear optics, fibers

Original Manuscript: February 9, 1999
Revised Manuscript: July 20, 1999
Published: December 20, 1999

George A. Nowak, Jaeyoun Kim, and Mohammed N. Islam, "Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber," Appl. Opt. 38, 7364-7369 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Alfano, ed., Supercontinuum Laser Source (Springer-Verlag, New York, 1989). [CrossRef]
  2. K. Mori, T. Morioka, M. Saruwatari, “Ultrawide spectral range group-velocity dispersion management using supercontinuum in an optical fiber pumped by a 1.5-µm compact laser source,” IEEE Trans. Instrum. Meas. 44, 712–715 (1995). [CrossRef]
  3. T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, H. Ono, “1 Tbit/s (100 Gbit/s × 10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996). [CrossRef]
  4. A. K. Srivastava, Y. Sun, J. W. Sulhoff, C. Wolf, M. Zirngibl, R. Monnard, A. R. Chraplyvy, A. A. Abramov, R. P. Espindola, T. A. Strasser, J. R. Pedrazzani, A. M. Vengsarkar, J. L. Zyskind, J. Zhou, D. A. Ferrand, P. F. Wysocki, J. B. Judkins, Y. P. Li, “1Tb/s transmission of 100 WDM 10Gb/s channels over 400 km of TrueWave fiber,” in Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), Postdeadline paper 10.
  5. Lightwave Test and Measurement Catalog 62 (Hewlett-Packard Co., 5301 Stevens Creek Blvd. Bldg. 51L-SC, Santa Clara, Calif. 95052-8059, 1997).
  6. T. Morioka, S. Kawanishi, K. Mori, M. Saruwatari, “Nearly penalty-free, 4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 1166–1168 (1994);K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1807 (1997). [CrossRef]
  7. T. Okuno, M. Onishi, M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photonics Technol. Lett. 10, 72–74 (1998). [CrossRef]
  8. H. Sotobayashi, K. Kitayama, “325nm bandwidth supercontinuum generation at 10Gb/s using dispersion-flattened and non-decreasing normal dispersion fiber with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998). [CrossRef]
  9. Y. Takushima, F. Futami, K. Kikuchi, “Generation of over 140-nm-wide supercontinuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photonics Technol. Lett. 10, 1560–1562 (1998). [CrossRef]
  10. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8, 289–291 (1983). [CrossRef] [PubMed]
  11. S. V. Chernikov, E. M. Dianov, D. J. Richardson, D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993). [CrossRef] [PubMed]
  12. P. K. A. Wai, C. R. Menyuk, H. H. Chen, Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-mode fiber,” Opt. Lett. 12, 628–630 (1987). [CrossRef] [PubMed]
  13. R. H. Stolen, C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978). [CrossRef]
  14. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986). [CrossRef]
  15. D. Marcuse, “An alternative derivation of the Gordon–Haus effect,” J. Lightwave Technol. 10, 273–278 (1992). [CrossRef]
  16. D. Wood, “Constraints on the bit-rates in direct detection optical communication systems using linear or soliton pulses,” J. Lightwave Technol. 8, 1097–1106 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited