OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 36 — Dec. 20, 1999
  • pp: 7386–7392

Femtosecond-pulse cavity-dumped solid-state oscillator design and application to ultrafast microscopy

Yish-Hann Liau, Andreas N. Unterreiner, David C. Arnett, and Norbert F. Scherer  »View Author Affiliations


Applied Optics, Vol. 38, Issue 36, pp. 7386-7392 (1999)
http://dx.doi.org/10.1364/AO.38.007386


View Full Text Article

Enhanced HTML    Acrobat PDF (117 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The construction, modeling, and performance characteristics of a new resonator design for ultrafast cavity-dumped oscillators are presented. An acousto-optic Bragg cell was incorporated at the end of the longer arm of a Ti:sapphire oscillator rather than in the shorter arm as in several recent studies. The new arrangement improves the pulse intensity stability of the oscillator and significantly reduces the effort required in construction. The experimental findings are supported by comparison of the stability regions of the laser cavities based on the two different designs. To demonstrate the potential of cavity-dumped oscillators for spatially resolved ultrafast spectroscopy studies, the pulse duration is characterized at the focal plane of two achromatic high-N.A. oil-immersion objectives with different amounts of flat-field correction. Transform-limited pulse widths as short as 15 fs are obtained. To our knowledge, this is the shortest pulse duration measured with true high-N.A. (N.A. > 1) focusing conditions.

© 1999 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(140.3410) Lasers and laser optics : Laser resonators
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(300.6530) Spectroscopy : Spectroscopy, ultrafast

History
Original Manuscript: July 16, 1999
Revised Manuscript: September 3, 1999
Published: December 20, 1999

Citation
Yish-Hann Liau, Andreas N. Unterreiner, David C. Arnett, and Norbert F. Scherer, "Femtosecond-pulse cavity-dumped solid-state oscillator design and application to ultrafast microscopy," Appl. Opt. 38, 7386-7392 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-36-7386


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. E. Spence, P. N. Kean, W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991). [CrossRef] [PubMed]
  2. M. T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18, 977–979 (1993). [CrossRef] [PubMed]
  3. A. Stingl, C. Spielmann, F. Krausz, R. Szipöcs, “Generation of 11-fs pulses from a Ti:sapphire laser without the use of prisms,” Opt. Lett. 19, 204–206 (1994). [CrossRef] [PubMed]
  4. J. Zhou, G. Taft, C.-P. Huang, M. M. Murnane, H. C. Kapteyn, I. Christov, “Pulse evolution in a broad-bandwidth Ti:sapphire laser,” Opt. Lett. 19, 1149–1151 (1994). [CrossRef] [PubMed]
  5. A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, R. Szipöcs, “Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser,” Opt. Lett. 20, 602–604 (1995). [CrossRef] [PubMed]
  6. I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett 22, 1009–1011 (1997). [CrossRef] [PubMed]
  7. T. B. Norris, “Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation,” Opt. Lett. 17, 1009–1011 (1992). [CrossRef] [PubMed]
  8. S. Backus, C. G. Durfee, M. M. Murnane, H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998). [CrossRef]
  9. M. Horn, J. Grueztzmacher, B. Flanders, X. Shang, N. F. Scherer (Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637) are preparing a manuscript to be called “Gain-switched low dispersion all acousto-optic femtosecond pulse amplifier.”
  10. M. Ramaswamy, M. Ulman, J. Paye, J. G. Fujimoto, “Cavity-dumped femtosecond Kerr-lens mode-locked Ti:Al2O3 laser,” Opt. Lett. 18, 1822–1824 (1993). [CrossRef] [PubMed]
  11. M. S. Pshenichnikov, W. P. de Boeij, D. A. Wiersma, “Generation of 13-fs, 5-MW pulses from a cavity-dumped Ti:sapphire laser,” Opt. Lett. 19, 572–574 (1994). [CrossRef] [PubMed]
  12. D. C. Arnett, P. Vöhringer, N. F. Scherer, “Excitation dephasing, product formation, and vibrational coherence in an intervalence charge-transfer reaction,” J. Am. Chem. Soc. 117, 12,262–12,272 (1995). [CrossRef]
  13. E. Slobodchikov, J. Ma, V. Kamalov, K. Tominaga, K. Yoshihara, “Cavity-dumped femtosecond Kerr-lens mode locking in a chromium-doped forsterite laser,” Opt. Lett. 21, 354–356 (1996). [CrossRef] [PubMed]
  14. A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175 (1997). [CrossRef]
  15. B. N. Flanders, D. C. Arnett, N. F. Scherer, “Optical pump-terahertz probe spectroscopy utilizing a cavity-dumped oscillator-driven terahertz spectrometer,” IEEE J. Quantum Electron. 4, 353–359 (1998). [CrossRef]
  16. W. Denk, J. H. Strickler, W. W. Webb, “2-Photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  17. M. J. Feldstein, P. Vöhringer, W. Wang, N. F. Scherer, “Femtosecond optical spectroscopy and scanning probe microscopy,” J. Phys. Chem. 100, 4739–4748 (1996). [CrossRef]
  18. J. C. Williamson, J. M. Cao, H. Ihee, H. Frey, A. H. Zewail, “Clocking transient chemical changes by ultrafast electron diffraction,” Nature (London) 386, 159–162 (1997). [CrossRef]
  19. M. A. Bopp, Y. Jia, G. Haran, E. A. Morlino, R. M. Hochstrasser, “Single-molecule spectroscopy with 27 fs pulses: time-resolved experiments and direct imaging of orientational distributions,” Appl. Phys. Lett. 73, 7–9 (1998). [CrossRef]
  20. Y. Nagasawa, J. Y. Yu, G. R. Fleming, “Solute-solvent interaction dynamics studied by photon echo spectroscopies in polymer glasses,” J. Chem. Phys. 109, 6175–6183 (1998). [CrossRef]
  21. W. P. de Boeij, M. S. Pshenichnikov, D. A. Wiersma, “Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies,” Annu. Rev. Phys. Chem. 49, 99–123 (1998). [CrossRef]
  22. A. Rundquist, C. G. Durfee, Z. H. Chang, C. Herne, S. Backus, M. M. Murnane, H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1415 (1998). [CrossRef] [PubMed]
  23. C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction,” Nature (London) 398, 310–312 (1999). [CrossRef]
  24. D. C. Arnett, C. C. Moser, P. L. Dutton, N. F. Scherer, “The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides,” J. Phys. Chem. 103, 2014–2032 (1999).
  25. L. Book, N. F. Scherer, “Wavelength-resolved stimulated photon echoes: direct observation of ultrafast intramolecular vibrational contributions to electronic dephasing,” J. Chem. Phys. 111, 1–4 (1999). [CrossRef]
  26. Approximate distances of mirror separation for the new design in units of centimeters are OC–M2, 22.2; M2–M1, 10.4; M1–P1, 18; P1–P2, 40; P2–P3, 14; P3–P4, 40; P4–M3, 29; M3–M4, 20.7. Fold angle about TS (Ti:sapphire), 15°; about BC (Bragg cell), 11°.
  27. Approximate distances of mirror separation for the traditional design in units of centimeters are HR– (high reflector–) M4, 30; M4–M3, 14.6; M3–M2, 43.5; M2–M1, 10.7; M1–P1, 21.5; P1–P2, 62; P2–OC, 12. Fold angle about TS (Ti:sapphire), 15°; about BC (Bragg cell), 11°.
  28. C. Spielmann, P. F. Curley, T. Brabec, F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994). [CrossRef]
  29. T. Brabec, P. E. Curley, C. Spielmann, E. Wintner, A. J. Schmidt, “Hard-aperture Kerr-lens mode locking,” J. Opt. Soc. Am. B 10, 1029–1034 (1993). [CrossRef]
  30. A. J. Ruggiero, N. F. Scherer, G. M. Mitchell, G. R. Fleming, J. N. Hogan, “Regenerative amplification of picosecond pulses in Nd-YAG at repetition rates in the 100-kHz range,” J. Opt. Soc. Am. B 8, 2061–2067 (1991). [CrossRef]
  31. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  32. H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972). [CrossRef]
  33. W. P. de Boeij, “Ultrafast solvation dynamics explored by nonlinear optical spectroscopy,” Ph.D. dissertation (Department of Chemical Physics, University of Groningen, Groningen, The Netherlands, 1997).
  34. A. Cybo-Ottone, M. Nisoli, V. Magni, S. De Silvestri, O. Svelto, “Highly stable 60-fs pulses from a cavity-dumped hybridly mode-locked dye-laser,” Opt. Commun. 92, 271–276 (1992). [CrossRef]
  35. E. W. Castner, J. J. Korpershoek, D. A. Wiersma, “Experimental and theoretical resonator analysis of linear femtosecond dye lasers,” Opt. Commun. 78, 90–99 (1990). [CrossRef]
  36. J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Müller, G. J. Brakenhoff, “Characterization of femtosecond pulses focused using interferometric surface-third-harmonic generation,” Opt. Commun. 147, 153–156 (1998). [CrossRef]
  37. D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, M. Müller, “Collinear type II second-harmonic-generation frequency-resolved optical gating for use with highnumerical-aperture objectives,” Opt. Lett. 23, 1046–1048 (1998). [CrossRef]
  38. P. Dorn, J. Jasapara, J. Zeller, W. Rudolph, M. Sheik-Bahae, “Femtosecond nonlinear microscopy of photodetectors,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. Wiersma, W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 165–167. [CrossRef]
  39. J. Jasapara, W. Rudolph, “Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives,” Opt. Lett. 24, 777–779 (1999). [CrossRef]
  40. F. Muchel, “ICS: a new principle in optics,” Zeiss Inform. Oberkochen 30, 20–27 (1988).
  41. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999). [CrossRef]
  42. Y.-H. Liau, M. J. Feldstein, N. F. Scherer, “Ultrafast STM-tip localized responses from nanostructured surfaces,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. Wiersma, W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 156–158. [CrossRef]
  43. Y.-H. Liau (Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637), A. N. Unterreiner, Q. Chang, N. F. Scherer are preparing a manuscript to be called “Ultrafast dephasing of surface plasmons in single Ag colloids studied by spatially resolved SHG-interferometry.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited