OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 5 — Feb. 10, 1999
  • pp: 863–868

Readout Characteristics of a Near-Field Optical Probe as a Data-Storage Readout Device: Submicrometer Scan Height and Resolution

Hiroshi Yoshikawa, Toshifumi Ohkubo, Kenji Fukuzawa, Laurence Bouet, and Manabu Yamamoto  »View Author Affiliations


Applied Optics, Vol. 38, Issue 5, pp. 863-868 (1999)
http://dx.doi.org/10.1364/AO.38.000863


View Full Text Article

Acrobat PDF (604 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A photodiode-embedded near-field scanning microscope cantilever (photocantilever) was used to scan in a noncontact, constant-height mode at a range common in hard disk drives to examine its readout capabilities when mounted on a flying-slider head. The intensity ratios of spatial frequencies that compose the obtained near-field image were analyzed by use of the fast Fourier transform. A simplified model was developed as a guiding principle for estimating the readout characteristics of the near-field optical probe in the above-proximity scan-height range.

© 1999 Optical Society of America

OCIS Codes
(110.2960) Imaging systems : Image analysis
(180.5810) Microscopy : Scanning microscopy
(210.4680) Optical data storage : Optical memories
(210.4770) Optical data storage : Optical recording
(230.5170) Optical devices : Photodiodes

Citation
Hiroshi Yoshikawa, Toshifumi Ohkubo, Kenji Fukuzawa, Laurence Bouet, and Manabu Yamamoto, "Readout Characteristics of a Near-Field Optical Probe as a Data-Storage Readout Device: Submicrometer Scan Height and Resolution," Appl. Opt. 38, 863-868 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-5-863


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. J. Mamin and D. Rugar, “Thermomechanical writing with an atomic force microscope tip,” Appl. Phys. Lett. 61, 1003–1005 (1992).
  2. H. J. Mamin, L. S. Fan, S. Hoen, and D. Rugar, “Tip-based data storage using micromechanical cantilevers,” Sensors Actuators 48, 215–219 (1995).
  3. Y. Martin, S. Rishton, and H. K. Wickramasinghe, “Optical data storage read out at 256 Gbits/in.2,” Appl. Phys. Lett. 71, 1–3 (1997).
  4. T. Ohkubo, J. Kishigami, K. Yanagisawa, and R. Kaneko, “Submicron magnetizing and its detection based on the point magnetic recording concept,” IEEE Trans. Magn. 27, 5286–5288 (1991).
  5. T. Ohkubo, J. Kishigami, K. Yanagisawa, and R. Kaneko, “Reduced-area magnetic bit recording and detection using magnetic force microscopy based on application of bidirectional magnetomotive force,” IEEE Trans. Magn. 29, 4086–4088 (1993).
  6. D. Pohl, “Some thoughts about scanning probe microscopy, micromechanics, and storage,” IBM J. Res. Dev. 39, 701–711 (1995).
  7. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
  8. U. Durig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
  9. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostealk, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
  10. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
  11. S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotune, M. Terao, M. Yoshida, K. Fujita, and S. Kammer, “Nanometer-sized phase change recording using a scanning near-field optical microscope with a laser diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
  12. D. W. Pohl and D. Courjoun, eds., Near-Field Optics, NATO Advanced Science Institutes Series E (Kluwer, Dordrecht, The Netherlands, 1993), Vol. 242.
  13. M. Nieto-Vesperinas and N. Garcia, eds., Optics at the Nanometer Scale, NATO Advanced Science Institutes Series E (Kluwer, Dordrecht, The Netherlands, 1996), Vol. 319.
  14. E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
  15. P. C. Yang, Y. Chen, and M. Vaez-Iravani, “Attractive-mode atomic force microscopy with optical detection in an orthogonal cantilever/sample configuration,” J. Appl. Phys. 71, 2499–2502 (1992).
  16. R. Toledo-Crow, P. C. Yang, Y. Chen, and M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
  17. K. Liberman and A. Lewis, “Simultaneous scanning tunneling and optical near-field imaging with a micropipette,” Appl. Phys. Lett. 62, 1335–1337 (1993).
  18. K. Fukuzawa, Y. Tanaka, S. Akamine, H. Kuwano, and H. Yamada, “Imaging of optical and topographical distributions by simultaneous near field scanning optical/atomic force microscopy with a microfabricated photocantilever,” J. Appl. Phys. 78, 7376–7381 (1995).
  19. N. F. van Hulst, M. H. P. Moers, O. F. J. Noordham, R. G. Tack, F. B. Segerink, and B. Bolger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62, 461–463 (1993).
  20. K. Kobayashi and O. Watanuki, “Characteristics of photon scanning tunneling microscope read-out,” J. Vac. Sci. Technol. B 14, 804–808 (1996).
  21. A. Madrazo and M. Nieto-Vesperinas, “Model near-field calculations for optical data storage readout,” Appl. Phys. Lett. 70, 31–33 (1997).
  22. S. Akamine, H. Yamada, and H. Kuwano, “Scanning near-field optical microscope using an atomic force microscope cantilever with integrated photodiode,” Appl. Phys. Lett. 68, 579–581 (1996).
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  24. D. Van Labeke and D. Barchiesi, “Scanning-tunneling optical microscopy: a theoretical macroscopic approach,” J. Opt. Soc. Am. A 9, 732–739 (1992).
  25. R. Petit, ed., Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980).
  26. D. Maystre, “Rigorous vector theories of diffraction gratings,” in Progress in Optics XXI, E. Wolf, ed. (Elsevier, Amsterdam, 1984), pp. 1–67.
  27. Y. Chen and R. K. Kupka, “Analysis of the near field image formation of dielectric gratings,” Ultramicroscopy 57, 153–159 (1995).
  28. A. Yariv, Introduction to Optical Electronics, 3rd ed. (Holt, Rinehart & Winston, New York, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited