OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 7 — Mar. 1, 1999
  • pp: 1259–1272

Measurement of Tissue Absorption Coefficients by Use of Interferometric Photothermal Spectroscopy

Andrew D. Yablon, Norman S. Nishioka, Bora B. Mikic, and Vasan Venugopalan  »View Author Affiliations

Applied Optics, Vol. 38, Issue 7, pp. 1259-1272 (1999)

View Full Text Article

Acrobat PDF (620 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a spectroscopic technique called interferometric photothermal spectroscopy (IPTS) that can measure the absorption coefficient of pulsed laser radiation in nonscattering tissue samples. The technique is suitable for measuring effective absorption coefficients from 103 to 105 cm−1. IPTS is particularly attractive because it requires minimal disturbance of the sample. These features indicate potential use for in vivo measurements of tissue absorption coefficients. To validate the technique, the absorption coefficient of pulsed Q-switched Er:YSGG (2.79-μm) radiation in pure water was measured to be 5200 (∓500) cm−1 when IPTS was used, in agreement with other published values. IPTS was also used to measure the absorption coefficient of pulsed ArF excimer laser radiation (193 nm) in bovine corneal stroma (in vitro), giving a value of 1.9 (∓0.4) × 104 cm−1.

© 1999 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6930) Medical optics and biotechnology : Tissue
(300.6430) Spectroscopy : Spectroscopy, photothermal

Andrew D. Yablon, Norman S. Nishioka, Bora B. Mikic, and Vasan Venugopalan, "Measurement of Tissue Absorption Coefficients by Use of Interferometric Photothermal Spectroscopy," Appl. Opt. 38, 1259-1272 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
  2. T. E. Milner, D. J. Smithies, D. M. Goodman, A. Lau, and J. S. Nelson, “Depth determination of chromophore in human skin by pulsed photothermal radiometry,” Appl. Opt. 35, 3379–3385 (1996).
  3. I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Natl. Acad. Sci. 92, 1960–1964 (1995).
  4. D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, I. Itzkan, and M. S. Feld, “Photomechanical basis of laser ablation of biological tissue,” Opt. Lett. 19, 1684–1686 (1994).
  5. D. Albagli, “Fundamental mechanisms of pulsed laser ablation of biological tissue,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1994).
  6. J. T. Walsh, Jr., and J. P. Cummings, “Effect of the dynamic optical properties of water on mid-infrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1994).
  7. K. L. Vodopyanov, “Saturation studies of H2O and HDO near 3400 cm−1 using intense picosecond laser pulses,” J. Chem. Phys. 94, 5389–5393 (1991).
  8. C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, and C. M. Adler, “Excimer laser ablation of the cornea and lens,” Ophthalmology 92, 741–748 (1985).
  9. M. N. Ediger, G. H. Pettit, R. P. Weiblinger, and C. H. Chen, “Transmission of corneal collagen during ArF excimer laser ablation,” Lasers Surg. Med. 13, 204–210 (1993).
  10. M. N. Ediger, G. H. Pettit, and D. W. Hahn, “Enhanced ArF laser absorption in a collagen target under ablative conditions,” Lasers Surg. Med. 15, 107–111 (1994).
  11. G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, “Dynamic optical properties of collagen-based tissue during ArF excimer laser ablation,” Appl. Opt. 32, 488–492 (1993).
  12. P. T. Staveteig and J. T. Walsh, Jr., “Dynamic 193-nm optical properties of water,” Appl. Opt. 35, 3392–3403 (1996).
  13. R. Srinivasan, P. E. Dyer, and B. Braren, “Far-ultraviolet laser ablation of the cornea: photoacoustic studies,” Lasers Surg. Med. 6, 514–519 (1987).
  14. G. H. Pettit and M. N. Ediger, “Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation,” Appl. Opt. 35, 3386–3391 (1996).
  15. E. M. Sparrow and R. D. Cess, Radiation Heat Transfer, Augmented ed. (Brooks/Cole, Belmont, Calif., 1978).
  16. R. C. Weast, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1987).
  17. A. D. Yablon, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “An interferometer for monitoring the surface displacement of a reflecting biological tissue surface,” in Advances in Heat and Mass Transfer in Biotechnology, HTD-337/BED-34, L. J. Hayes and S. Clegg, eds. (American Society of Mechanical Engineers, New York, 1996), pp. 75–80.
  18. Dow Chemical Corporation, Typical properties for Saran Wrap 19, Product data sheet 190–00456–496RJD (Dow Chemical Corporation, Midland, Mich., 1997).
  19. H. D. Downing and D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656–1661 (1975).
  20. Kimble Glass Corporation, Properties of Kimble Glasses, Product data sheet (Kimble Glass Corporation, Vineland, N.J., 1997).
  21. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C (Cambridge University, New York, 1988).
  22. A. F. Emery, P. Kramar, A. W. Guy, and J. C. Lin, “Microwave induced temperature rises in rabbit eyes in cataract research,” J. Heat Transfer 97, 123–128 (1975).
  23. J. A. Scott, “A finite element model of heat transport in the human eye,” Phys. Med. Biol. 33, 227–241 (1988).
  24. J. L. Battaglioli and R. D. Kamm, “Measurements of the compressive properties of scleral tissue,” Invest. Ophthalmol. Vis. Sci. 25, 59–65 (1984).
  25. D. M. Maurice, “The cornea and sclera,” in The Eye, H. Davson, ed. (Academic, New York, 1984), Vol. 1b, pp. 1–158.
  26. G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, “Excimer laser corneal ablation: absence of a significant ‘incubation’ effect,” Lasers Surg. Med. 11, 411–418 (1991).
  27. J. P. Cummings and J. T. Walsh, Jr., “Erbium laser ablation: the effect of dynamic optical properties,” Appl. Phys. Lett. 62, 1988–1990 (1993).
  28. B. J. Garrison and R. Srinivasan, “Laser ablation of organic polymers: microscopic models for photochemical and thermal processes,” J. Appl. Phys. 57, 2909–2914 (1985).
  29. R. Srinivasan and B. Braren, “Ultraviolet laser ablation of organic polymers,” Chem. Rev. 89, 1303–1316 (1989).
  30. Q. Ren, R. P. Gailitis, K. P. Thompson, and J. T. Lin, “Ablation of the cornea and synthetic polymers using a UV (213 nm) solid-state laser,” IEEE J. Quantum Electron. 26, 2284–2288 (1990).
  31. Q. Ren, G. Simon, J.-M. Legeais, J.-M. Parel, W. Culbertson, J. Shen, Y. Takesue, and M. Savoldelli, “Ultraviolet solid-state laser (213-nm) photorefractive keratectomy,” Ophtalmology 101, 883–889 (1994).
  32. Q. Ren, R. H. Keates, R. A. Hill, and M. W. Berns, “Laser refractive surgery: a review and current status,” Opt. Eng. 34, 642–658 (1995).
  33. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited