OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 8 — Mar. 10, 1999
  • pp: 1332–1342

Three-dimensional coherence imaging in the Fresnel domain

Daniel L. Marks, Ronald A. Stack, and David J. Brady  »View Author Affiliations


Applied Optics, Vol. 38, Issue 8, pp. 1332-1342 (1999)
http://dx.doi.org/10.1364/AO.38.001332


View Full Text Article

Enhanced HTML    Acrobat PDF (1174 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that three-dimensional incoherent primary sources can be reconstructed from finite-aperture Fresnel-zone mutual intensity measurements by means of coordinate and Fourier transformation. The spatial bandpass and impulse response for three-dimensional imaging that result from use of this approach are derived. The transverse and longitudinal resolutions are evaluated as functions of aperture size and source distance. The longitudinal resolution of three-dimensional coherence imaging falls inversely with the square of the source distance in both the Fresnel and Fraunhofer zones. We experimentally measure the three-dimensional point-spread function by using a rotational shear interferometer.

© 1999 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(070.4550) Fourier optics and signal processing : Correlators
(100.3010) Image processing : Image reconstruction techniques
(100.6890) Image processing : Three-dimensional image processing
(110.1650) Imaging systems : Coherence imaging
(110.4850) Imaging systems : Optical transfer functions

History
Original Manuscript: January 5, 1998
Revised Manuscript: October 28, 1998
Published: March 10, 1999

Citation
Daniel L. Marks, Ronald A. Stack, and David J. Brady, "Three-dimensional coherence imaging in the Fresnel domain," Appl. Opt. 38, 1332-1342 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-8-1332


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. V. Schooneveld, ed., Image Formation from Coherence Functions in Astronomy, Vol. 76 of International Astronomical Union Colloquium 49 (Reidel, Dordrecht, The Netherlands, 1978).
  2. F. Roddier, “Interferometric imaging in optical astronomy,” Phys. Rep. 170, 97–166 (1988). [CrossRef]
  3. G. W. Swenson, “Radio astronomy precedent for optical interferometer imaging,” J. Opt. Soc. Am. A 3, 1311–1319 (1986). [CrossRef]
  4. J. T. Armstrong, D. J. Hutter, K. J. Johnston, D. Mozurkewich, “Stellar optical interferometry in the 1990s,” Phys. Today 48(5), 42–49 (1995). [CrossRef]
  5. A. J. Devaney, “The inverse problem for random sources,” J. Math. Phys. 20, 1687–1691 (1979). [CrossRef]
  6. W. H. Carter, E. Wolf, “Correlation theory of wavefields generated by fluctuating, three-dimensional, primary, scalar sources. I. General theory,” Opt. Acta 28, 227–244 (1981). [CrossRef]
  7. I. J. LaHaie, “Inverse source problem for three-dimensional partially coherent sources and fields,” J. Opt. Soc. Am. A 2, 35–45 (1985). [CrossRef]
  8. A. M. Zarubin, “Three-dimensional generalization of the van Cittert–Zernike theorem to wave and particle scattering,” Opt. Commun. 100, 491–507 (1993). [CrossRef]
  9. J. Rosen, A. Yariv, “General theorem of spatial coherence: application to three-dimensional imaging,” J. Opt. Soc. Am. 13, 2091–2095 (1996). [CrossRef]
  10. J. Rosen, A. Yariv, “Reconstruction of longitudinal distributed incoherent sources,” Opt. Lett. 21, 1803–1806 (1996). [CrossRef] [PubMed]
  11. J. Rosen, A. Yariv, “Three-dimensional imaging of random radiation sources,” Opt. Lett. 21, 1011–1014 (1996). [CrossRef] [PubMed]
  12. B. R. Frieden, “Optical transfer of the three-dimensional object,” J. Opt. Soc. Am. 57, 56–66 (1967). [CrossRef]
  13. A. W. Lohmann, “Three-dimensional properties of wave-fields,” Optik 51, 105–117 (1978).
  14. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995). [CrossRef]
  15. M. Y. Chiu, H. H. Barrett, R. G. Simpson, C. Chou, J. W. Ardent, G. R. Gindi, “Three-dimensional radiographic imaging with a restricted view angle,” J. Opt. Soc. Am. 69, 1323–1333 (1979). [CrossRef]
  16. D. H. DeVorkin, “Michelson and the problem of stellar diameters,” J. Hist. Astron. 6, 1–18 (1975).
  17. J. D. Armitage, A. Lohmann, “Rotary shearing interferometry,” Opt. Acta 12, 185–192 (1965). [CrossRef]
  18. C. Roddier, F. Roddier, “Imaging with a coherence interferometer in optical astronomy,” in Image Formation from Coherence Functions in Astronomy, C. V. Schooneveld, ed., Vol. 76 of International Astronomical Union Colloquium 49 (Reidel, Dordrecht, The Netherlands, 1979), pp. 175–179. [CrossRef]
  19. K. Itoh, Y. Ohtsuka, “Fourier-transform spectral imaging: retrieval of source information from three-dimensional spatial coherence,” J. Opt. Soc. Am. A 3, 94–100 (1986). [CrossRef]
  20. K. Itoh, T. Inoue, T. Yoshida, Y. Ichioka, “Interferometric supermultispectral imaging,” Appl. Opt. 29, 1625–1630 (1990). [CrossRef] [PubMed]
  21. K. Itoh, T. Inoue, Y. Ichioka, “Interferometric spectral imaging and optical three-dimensional Fourier transformation,” J. J. Appl. Phys. 29, L1561–L1564 (1990).
  22. K. Itoh, “Interferometric multispectral imaging,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1996), Vol. 35, pp. 145–196. [CrossRef]
  23. L. Mertz, Transformations in Optics (Wiley, New York, 1965).
  24. J. J. Knab, “Interpolation of band-limited functions using the approximate prolate series,” IEEE Trans. Inf. Theory IT-25, 717–720 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited