OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1502–1505

Mid-infrared vertical-cavity surface-emitting lasers for chemical sensing

William W. Bewley, Christopher L. Felix, Igor Vurgaftman, Edward H. Aifer, Linda J. Olafsen, Jerry R. Meyer, Lew Goldberg, and David H. Chow  »View Author Affiliations


Applied Optics, Vol. 38, Issue 9, pp. 1502-1505 (1999)
http://dx.doi.org/10.1364/AO.38.001502


View Full Text Article

Enhanced HTML    Acrobat PDF (156 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The first (to our knowledge) III–V mid-IR vertical-cavity surface-emitting lasers (λ = 2.9 µm) are demonstrated and show promising characteristics for chemical detection applications. The cw optical-pumping threshold is low (4 mW at 80 K) and efficiency is high (5.6% W/W). Pulsed operation is obtained up to 280 K and cw up to 160 K. Lateral-mode confinement will lead to spectrally pure, single-mode output for chemical identification.

© 1999 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6340) Spectroscopy : Spectroscopy, infrared

History
Original Manuscript: May 26, 1998
Revised Manuscript: July 22, 1998
Published: March 20, 1999

Citation
William W. Bewley, Christopher L. Felix, Igor Vurgaftman, Edward H. Aifer, Linda J. Olafsen, Jerry R. Meyer, Lew Goldberg, and David H. Chow, "Mid-infrared vertical-cavity surface-emitting lasers for chemical sensing," Appl. Opt. 38, 1502-1505 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1502


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Bauer, M. Kriechbaum, Z. Shi, M. Tacke, “IV–VI quantum wells for infrared lasers,” J. Nonlinear Opt. Phys. Mater. 4, 283–312 (1995). [CrossRef]
  2. D. J. Bamford, K. Petrov, A. T. Ryan, T. L. Patterson, L. Huang, D. Hui, S. J. Field, “Mid-infrared laser source for gas sensing based on frequency-converted diode lasers,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 117–119.
  3. D. G. Lancaster, D. Richter, J. C. Graf, R. F. Curl, F. K. Tittel, “Laser based absorption sensor for trace gas monitoring in a spacecraft environment,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 125–127.
  4. T. Töpfer, K. P. Petrov, Y. Mine, D. Jundt, R. F. Curl, F. K. Tittel, “Room-temperature mid-infrared laser sensor for trace gas detection,” Appl. Opt. 36, 8042–8049 (1997). [CrossRef]
  5. A. Bohren, M. W. Sigrist, “Optical parametric oscillator based difference frequency laser source for photoacoustic trace gas spectroscopy in the 3 µm mid-IR range,” Infrared Phys. Technol. 38, 423–435 (1997). [CrossRef]
  6. R. U. Martinelli, “Mid-infrared wavelengths enhance trace-gas sensing,” Laser Focus World 32(3) , 77–81 (1996).
  7. E. Hadji, J. Bleuse, N. Magnea, J. L. Pautrat, “Photopumped infrared vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 68, 2480–2482 (1996). [CrossRef]
  8. A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 µm at room temperature,” Electron. Lett. 34, 281–282 (1998). [CrossRef]
  9. C. L. Felix, W. W. Bewley, I. Vurgaftman, J. R. Meyer, L. Goldberg, D. H. Chow, E. Selvig, “Midinfrared vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 71, 3483–3485 (1997). [CrossRef]
  10. W. W. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, J. R. Meyer, L. Goldberg, J. R. Lindle, D. H. Chow, E. Selvig, “Continuous-wave mid-infrared VCSELs,” IEEE Photon. Technol. Lett. 10, 660–662 (1998). [CrossRef]
  11. L. R. Ram-Mohan, J. R. Meyer, “Multiband finite element modeling of wavefunction-engineered electro-optical devices,” J. Nonlinear Opt. Phys. Mater. 4, 191–243 (1995). [CrossRef]
  12. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett. 67, 757–759 (1995). [CrossRef]
  13. I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, “Mid-IR vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 34, 147–156 (1998). [CrossRef]
  14. C. L. Felix, J. R. Meyer, I. Vurgaftman, C.-H. Lin, S. J. Murry, D. Zhang, S.-S. Pei, “High-temperature 4.5 µm type-II quantum well laser with Auger suppression,” IEEE Photon. Technol. Lett. 9, 734–736 (1997). [CrossRef]
  15. L. J. Olafsen, E. H. Aifer, I. Vurgaftman, W. W. Bewley, C. L. Felix, J. R. Meyer, D. Zhang, C.-H. Lin, S. S. Pei, “Near-room-temperature mid-IR interband cascade laser,” Appl. Phys. Lett. 72, 2370–2372 (1998). [CrossRef]
  16. R. H. Miles, D. H. Chow, Y.-H. Zhang, P. D. Brewer, R. G. Wilson, “Midwave infrared stimulated emission from a GaInSb/InAs superlattice,” Appl. Phys. Lett. 66, 1921–1923 (1995). [CrossRef]
  17. H. Q. Le, C. W. Turner, J. R. Ochoa, “Turn-key, liquid-nitrogen-cooled 3.9 µm semiconductor laser package with 0.2 W cw output,” Electron. Lett. 32, 2359–2360 (1996). [CrossRef]
  18. F. Yang, P. Blood, J. S. Roberts, “Edge-emitting quantum well laser with Bragg reflectors,” Appl. Phys. Lett. 66, 2949–2951 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited