OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1733–1741

Measurements of OH radical concentration in combustion environments by wavelength-modulation spectroscopy with a 1.55-µm distributed-feedback diode laser

Tetsuya Aizawa, Takeyuki Kamimoto, and Takashi Tamaru  »View Author Affiliations


Applied Optics, Vol. 38, Issue 9, pp. 1733-1741 (1999)
http://dx.doi.org/10.1364/AO.38.001733


View Full Text Article

Enhanced HTML    Acrobat PDF (262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wavelength-modulation spectroscopy with a standard commercial 1.55-µm distributed-feedback diode laser was applied to in situ quantitative measurements of OH radical concentration in combustion environments. The second-harmonic (2f) signal was generated from absorption by the P11.5 (ν′, ν") = (2, 0) overtone vibrational transition of OH at 6421.354 cm-1. The absorption occurred in the postflame region of a two-dimensional laminar counterflow burner (Tsuji burner) with a 60-mm line-of-sight path length. The postflame region lies between propane–air premixed twin flames stabilized in the Tsuji burner at various equivalence ratios (ϕ = 0.65–1.0). The OH concentrations were determined by least-squares fitting of theoretical 2f line shapes to the experimental counterparts. The measured OH concentrations were in general agreement with adiabatic chemical equilibrium predictions. The lower limit of OH detectivity by multiline deconvolution was limited by ubiquitous unidentified high-temperature H2O transitions.

© 1999 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6380) Spectroscopy : Spectroscopy, modulation

History
Original Manuscript: June 30, 1998
Revised Manuscript: November 9, 1998
Published: March 20, 1999

Citation
Tetsuya Aizawa, Takeyuki Kamimoto, and Takashi Tamaru, "Measurements of OH radical concentration in combustion environments by wavelength-modulation spectroscopy with a 1.55-µm distributed-feedback diode laser," Appl. Opt. 38, 1733-1741 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1733


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. V. Nguyen, R. W. Dibble, T. Day, “High-resolution oxygen absorption spectrum obtained with an external-cavity continuously tunable diode laser,” Opt. Lett. 19, 2134–2136 (1994). [CrossRef] [PubMed]
  2. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998). [CrossRef]
  3. D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 µm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997). [CrossRef] [PubMed]
  4. D. B. Oh, M. E. Paige, D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499–2501 (1998). [CrossRef]
  5. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurement of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996). [CrossRef] [PubMed]
  6. D. M. Sonnenfroh, M. G. Allen, “Ultrasensitive, visible tunable diode laser detection of NO2,” Appl. Opt. 35, 4053–4058 (1996). [CrossRef] [PubMed]
  7. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996). [CrossRef] [PubMed]
  8. D. B. Oh, D. C. Hovde, “Wavelength-modulation detection of acetylene with a near-infrared external cavity diode laser,” Appl. Opt. 34, 7002–7005 (1995). [CrossRef] [PubMed]
  9. S. I. Chou, V. Nagali, D. S. Baer, R. K. Hanson, “Hydrocarbon measurements using diode-laser absorption near 1.65 µm,” AIAA Pap. 96-0746 (1996).
  10. M. F. Miller, W. J. Kessler, M. G. Allen, “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Appl. Opt. 35, 4905–4912 (1996). [CrossRef] [PubMed]
  11. J. A. Silver, D. J. Kane, P. S. Greengerg, “Quantitative species measurements in microgravity flames with near-IR diode lasers,” Appl. Opt. 34, 2787–2801 (1995). [CrossRef] [PubMed]
  12. M. G. Allen, W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31 µm diode lasers,” AIAA J. 34, 483–488 (1996). [CrossRef]
  13. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996). [CrossRef]
  14. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Advanced diode laser absorption sensor for in-situ combustion measurements of CO2, H2O, and gas temperature,” AIAA Pap. 98-0237 (1998).
  15. D. M. Sonnenfroh, M. G. Allen, “Diode laser sensors for combustor and aeroengine emission testing: applications to CO, CO2, OH, and NO,” AIAA Pap. 96-2226 (1996).
  16. D. M. Sonnenfroh, M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with an 1.8-µm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997). [CrossRef]
  17. D. B. Oh, M. E. Paige, A. C. Stanton, J. A. Silver, “Quantitative, in situ monitoring of combustion radicals using visible and near-infrared diode lasers and high frequency wavelength-modulation spectroscopy,” presented at the Fall Meeting of the Western States Section of the Combustion Institute, paper 96F-084 (University of Southern California, Los Angeles, Calif., 1996).
  18. D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994). [CrossRef]
  19. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  20. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992). [CrossRef] [PubMed]
  21. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopy: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef] [PubMed]
  22. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993). [CrossRef] [PubMed]
  23. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
  24. A. C. G. Mitchell, M. W. Zemansky, Resonance and Radiation and Excited Atoms (Cambridge U. Press, Cambridge, 1971).
  25. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  26. H. Tsuji, “Counterflow diffusion flames,” Prog. Energy Combust. Sci. 8, 93–119 (1982). [CrossRef]
  27. L. S. Rothman, R. B. Watson, R. R. Gamache, D. Goorvetch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, A. Goldman, J. Schroeder, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
  28. E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2 Σ+-X2Π (0, 0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987). [CrossRef]
  29. E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2 Σ+-X2Π band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989). [CrossRef]
  30. W. C. Reynolds, WRC@thermo.stanford.edu, computer program stanjan.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited