Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Recording high-dispersion spherical holographic gratings in a modified Rowland mounting by use of a multimode deformable mirror

Not Accessible

Your library or personal account may give you access

Abstract

To reduce the uncorrected higher-order aberrations for holographic gratings requiring an extreme dispersion, we have modified the Rowland mounting by moving the recording laser sources away from the grating. Then, with a multimode deformable plane mirror to record the grating, the correction of all the aberrations up to the fourth order inclusive is found sufficient to obtain a high-quality image. Applied to the FUSE-LYMAN grating, with a groove density of as much as 5740 grooves/mm, for which a resolution of 30,000 was required, this new recording device produces a resolution from 139,000 to 222,000 over the spectral range.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Third-generation holographic Rowland mounting: fourth-order theory

Michel Duban
Appl. Opt. 38(16) 3443-3449 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved