OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 15 — May. 20, 2000
  • pp: 2487–2495

Spectral Differentiation of Trace Concentrations of NO2 from NO by Laser Photofragmentation with Fragment Ionization at 226 and 452 nm: Quantitative Analysis of NO-NO2 Mixtures

Robert L. Pastel and Rosario C. Sausa  »View Author Affiliations

Applied Optics, Vol. 39, Issue 15, pp. 2487-2495 (2000)

View Full Text Article

Acrobat PDF (178 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser-induced photofragmentation with fragment ionization is used to detect and spectrally differentiate trace concentrations of NO<sub>2</sub> from NO in NO–NO<sub>2</sub> mixtures. A laser operating near 226 or 452 nm ionizes the target molecules, and the resulting electrons are collected with miniature electrodes. NO is detected by (1 + 1) resonance-enhanced multiphoton ionization by means of its <i>A</i><sup>2</sup>Σ<sup>+</sup> ← <i>X</i><sup>2</sup>Π (0, 0) transitions near 226 nm, whereas NO<sub>2</sub> is detected near 226 nm by laser photofragmentation with subsequent NO fragment ionization by means of both its <i>A</i><sup>2</sup>Σ<sup>+</sup> ← <i>X</i><sup>2</sup>Π (0, 0) and (1, 1) transitions. The NO fragment generated from the photolysis of NO<sub>2</sub> is produced rovibrationally excited with a significant population in the first vibrational level of the ground electronic state (<i>X</i><sup>2</sup>Π, υ″ = 1). In contrast, ambient NO has a room-temperature, Boltzmann population distribution favoring the lowest ground vibrational level (<i>X</i><sup>2</sup>Π, υ″ = 0). Thus discrimination is possible when the internal energy distributions of both fragment NO and ambient NO are probed. We also demonstrate this approach using visible radiation, further simplifying the experimental apparatus because frequency doubling of the laser radiation is not required. We measured up to three decades of NO–NO<sub>2</sub> mixtures with limits of detection (signal-to-noise ratio of 3) in the low parts per billion for both NO and NO<sub>2</sub> for a 10-s integration time using both ultraviolet or visible radiation.

© 2000 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(280.3420) Remote sensing and sensors : Laser sensors
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6410) Spectroscopy : Spectroscopy, multiphoton

Robert L. Pastel and Rosario C. Sausa, "Spectral Differentiation of Trace Concentrations of NO2 from NO by Laser Photofragmentation with Fragment Ionization at 226 and 452 nm: Quantitative Analysis of NO-NO2 Mixtures," Appl. Opt. 39, 2487-2495 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. B. Simeonsson and R. C. Sausa, “Laser photofragmentation/fragment detection techniques for chemical analysis of the gas phase,” Trends Anal. Chem. 17(8, 9), 542–550 (1998), and references therein.
  2. J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996), and references therein.
  3. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and L. J. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67(4), 433–441 (1998).
  4. H. J. Kolsch, P. Rairoux, J. P. Wolf, and L. Woste, “Simultaneous NO and NO2 DIAL measurement using BBO crystals,” Appl. Opt. 28, 2052–2056 (1989).
  5. M. Alden, H. Edner, and S. Svanberg, “Laser monitoring of atmospheric NO using ultraviolet differential-absorption techniques,” Opt. Lett. 7, 543–545 (1982).
  6. W. X. Peng, K. W. D. Leddingham, A. Marshall, and R. P. Singhal, “Urban air-pollution monitoring: laser-based procedure for the detection of NOx gases,” Analyst (London) 120, 2537–2542 (1995).
  7. J. Stenberg, R. Hernberg, and J. Vattulainen, “Analysis of pollutant chemistry in combustion by in situ pulsed photoacoustic laser diagnostics,” Appl. Opt. 34, 8400–8408 (1995).
  8. V. Swayambunathan, G. Singh, and R. C. Sausa, “Laser-photofragmentation–fragment detection and laser-pyrolysis–laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447–6454 (1999).
  9. D. Wu, J. Singh, F. Yueh, and D. Monts, “2, 4, 6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996).
  10. G. M. Boudreaux, T. S. Miller, A. J. Kunefke, J. P. Singh, F. Yueh, and D. Monts, “Development of a photofragmentation laser-induced-fluorescence laser sensor for detection of 2, 4, 6-trinitrotoluene in soil and groundwater,” Appl. Opt. 38, 1411–1417 (1999).
  11. G. W. Lemire, J. B. Simeonsson, and R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
  12. A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singal, C. Kosmidis, and R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8(7), 521–526 (1994).
  13. G. E. Collins and S. L. Rosepehrsson, “Chemiluminescence chemical sensors for oxygen and nitrogen-dioxide,” Anal. Chem. 67, 2224–2230 (1995).
  14. R. A. Robbins, A. A. Floreani, S. G. Von Essen, J. H. Sisson, G. E. Hill, I. Rubinstein, and R. G. Townley, “Measurement of exhaled nitric oxide by three different techniques,” Am. J. Respir. Crit. Care Med. 153, 1631–1635 (1996).
  15. M. Glasius, M. F. Carlsen, T. S. Hansen, and C. Lohse, “Measurement of nitrogen dioxide on Funene using diffusion tubes,” Atmos. Environ. 33, 1177–1185 (1999).
  16. S. Lee, J. Hirokawa, Y. Kajii, and H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997).
  17. T. Benter, M. Liesner, V. Sauerland, and R. N. Schindler, “Mass-spectrometric in-situ determination of NO2 in gas-mixtures by resonance-enhanced multiphoton ionization,” Fresenius J. Anal. Chem. 351(6), 489–492 (1995).
  18. G. R. Kumar and D. Mathur, “Reply to comment on ‘On the ionization and dissociation of NO2 by short, intense laser pulses, ’” Chem. Phys. Lett. 292, 647–650 (1998), and references therein.
  19. R. P. Singhal, H. S. Kilic, K. W. D. Ledingham, T. McCanny, W. X. Peng, D. J. Smith, C. Kosmidis, A. J. Langley, and P. F. Taday, “Comment on the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 292, 643–650 (1998).
  20. K. Vijaylakahmi, C. P. Safvan, G. R. Kumar, and D. Mathur, “On the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 270(1–2), 37–44 (1997).
  21. J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, and S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.
  22. M. O. Rodgers, K. A. Asai, and D. D. Davis, “Photofragmentation laser-induced fluorescence: a new method for detecting atmospheric trace gases,” Appl. Opt. 19, 3597–3605 (1980).
  23. R. L. Pastel and R. C. Sausa, “Detection of NO and NO2 by (2 + 2) resonance-enhanced multiphoton ionization and photoacoustic spectroscopy near 454 nm,” Appl. Opt. 35, 4046–4052 (1996).
  24. J. B. Simeonsson, G. W. Lemire, and R. C. Sausa, “Laser-induced photofragmentation/photoionization spectrometry: a method for detecting ambient oxides of nitrogen,” Anal. Chem. 66, 2272–2278 (1994).
  25. J. A. Last, W.-M. Sun, and H. Witschi, “Ozone, NO, and NO2-oxidant air-pollutants and more,” Environ. Health Perspect. 102 (Suppl. 10), 179–184 (1994).
  26. J. B. Simeonsson and R. C. Sausa, “Trace analysis of NO2 in the presence of NO by laser photofragmentation/fragment photoionization spectrometry at visible wavelengths,” Appl. Spectros. 50, 1277–1282 (1996).
  27. A. Fried, R. Sams, W. Dorko, J. W. Elkins, and Z. T. Cai, “Determination of nitrogen-dioxide in air compressed gas-mixtures by quantitative tunable diode-laser absorption spectrometry and chemiluminescence detection,” Anal. Chem. 60(5), 394–403 (1988).
  28. A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, and D. E. Winstead, “Reference NO2 calibration system for ground-based intercomparison during NASAs GTE/CITE-2 mission,” J. Geophys. Res. D 95, 10, 139–10, 146 (1990).
  29. H. Zacharias, R. Schmiedl, and K. H. Welge, “State selective step-wise photoionization of NO with mass spectroscopic ion detection,” Appl. Phys. 21, 127–133 (1980).
  30. L. Bigio, R. S. Tapper, and E. R. Grant, “The role of near-resonant intermediate states in the 2-photon excitation of NO2: the distinct dynamics of 2-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984), and references therein.
  31. R. J. S. Morrison and E. R. Grant, “Dynamics of the 2-photon photodissociation of NO2: a molecular multiphoton ionization study of NO photofragment internal energy-distributions,” J. Chem. Phys. 77, 5994–6004 (1982), and references therein.
  32. R. J. S. Morrison, B. H. Rockney, and E. R. Grant, “Multiphoton ionization of NO2: spectroscopy and dynamics,” J. Chem. Phys. 75, 2643–2651 (1981).
  33. J. A. Vanderhoff, M. W. Teague, and A. J. Kotlar, “Detection of temperature and NO concentrations through the dark zone of solid-propellant flames,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1915–1922.
  34. A. Henry, M. F. Le Moal, Ph. Cardinet, and A. Valentin, “Overtone bands of 14N16O and determination of molecular constants,” J. Mol. Spectros. 70(1), 18–26 (1978).
  35. R. Engleman, Jr., and P. E. Rouse, “The β and γ bands of nitric oxide observed during flash photolysis of nitrosyl chloride,” J. Mol. Spectros. 37, 240–251 (1971).
  36. I. S. McDermid and J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A 2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27(5), 483–492 (1982).
  37. D. C. Jacobs, R. J. Madix, and R. N. Zare, “Reduction of 1 + 1 resonance-enhanced MPI spectra to population-distributions: application to the NO (A 2Σ+ − X 2Π) system,” J. Chem. Phys. 85, 5469–5479 (1986).
  38. J. C. Miler and R. N. Compton, “Multiphoton ionization studies of ultracold nitric-oxide,” J. Chem. Phys. 84, 675–683 (1986).
  39. M. G. White, W. A. Chupka, M. Seaver, A. Woodward, and S. D. Colson, “Resonant multiphoton of NO via the 2Σ+ state: photoelectron-spectra and angular distributions,” J. Chem. Phys. 80, 678–686 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited