OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 16 — Jun. 1, 2000
  • pp: 2687–2694

Design and manufacture of a gradient-index axicon

David J. Fischer, Curtis J. Harkrider, and Duncan T. Moore  »View Author Affiliations


Applied Optics, Vol. 39, Issue 16, pp. 2687-2694 (2000)
http://dx.doi.org/10.1364/AO.39.002687


View Full Text Article

Enhanced HTML    Acrobat PDF (730 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A gradient-index axicon with its initial focus offset from the back surface was designed with the thin-lens approximation. Two samples were fabricated by means of the time-varying boundary condition diffusion method, which is based on the modified quasi-chemical diffusion model. Intensity profile measurements were taken along the focal region of the axicons. The samples produced extended line foci. From the intensity measurements, the central spot widths and back focal lengths were determined. The peak widths matched theoretical predictions made with the diffraction theory for the samples and showed good agreement with the predicted widths for a pseudo-Bessel beam, showing that the axicon produced a pseudo-diffractionless beam.

© 2000 Optical Society of America

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(220.3620) Optical design and fabrication : Lens system design

History
Original Manuscript: October 4, 1999
Revised Manuscript: February 3, 2000
Published: June 1, 2000

Citation
David J. Fischer, Curtis J. Harkrider, and Duncan T. Moore, "Design and manufacture of a gradient-index axicon," Appl. Opt. 39, 2687-2694 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-16-2687


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597.
  2. J. H. McLeod, “Axicons and their uses,” J. Opt. Soc. Am. 50, 166–169 (1960). [CrossRef]
  3. J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  4. D. DeBeer, S. R. Hartmann, R. Friedberg, J. Durnin, J. J. Miceli, J. H. Eberly, “Comment on ‘diffraction-free beams’ (with reply),” Phys. Rev. Lett. 59, 2611–2612 (1987). [CrossRef]
  5. S. Fujiwara, “Optical properties of conic surfaces. I. Reflecting cone,” J. Opt. Soc. Am. 52, 287–292 (1962). [CrossRef]
  6. Z. Jaroszewicz, T. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens,” J. Opt. Soc. Am. A 15, 2383–2390 (1998). [CrossRef]
  7. J. Sochacki, A. Kolodziejczyk, Z. Jaroszewicz, S. Bara, “Nonparaxial design of generalized axicons,” Appl. Opt. 31, 5326–5330 (1992). [CrossRef] [PubMed]
  8. J. P. Bowen, J. B. Caldwell, L. R. Gardner, N. Haun, M. T. Houk, D. S. Kindred, D. T. Moore, M. Shiba, D. Y. H. Wang, “Radial gradient-index eyepiece design,” Appl. Opt. 27, 3170–3176 (1988). [CrossRef] [PubMed]
  9. M. Deguchi, D. T. Moore, D. S. Kindred, “Zoom lens design using gradient-index lenses,” in Image Acquisition and Scientific Imaging Systems, H. C. Titus, A. Waks, eds., Proc. SPIE2173, 161–168 (1994). [CrossRef]
  10. D. S. Kindred, D. T. Moore, “Design, fabrication, and testing of a gradient-index binocular objective,” Appl. Opt. 27, 492–495 (1988). [CrossRef] [PubMed]
  11. J. L. Rouke, M. K. Crawford, D. J. Fischer, C. J. Harkrider, D. T. Moore, T. H. Tomkinson, “Design of three-element night-vision goggle objectives,” Appl. Opt. 37, 622–626 (1998). [CrossRef]
  12. T. H. Tomkinson, J. L. Bentley, M. K. Crawford, C. J. Harkrider, D. T. Moore, J. L. Rouke, “Rigid endoscopic relay systems: a comparative study,” Appl. Opt. 35, 6674–6683 (1996). [CrossRef] [PubMed]
  13. E. W. Marchand, “Axicon gradient lenses,” Appl. Opt. 29, 4001–4002 (1990). [CrossRef] [PubMed]
  14. R. M. Gonzalez, J. Linares, C. Gomez-Reino, “Gradient-index axicon lenses: a quasi-geometrical study,” Appl. Opt. 33, 3420–3426 (1994). [CrossRef] [PubMed]
  15. R. M. Herman, T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991). [CrossRef]
  16. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  17. S. D. Fantone, “Refractive index and spectral models for gradient-index materials,” Appl. Opt. 22, 432–440 (1983). [CrossRef] [PubMed]
  18. W. N. Charman, “Theoretical aspects of concentric varifocal lenses,” Ophthalmic Physiol. Opt. 2, 75–86 (1982). [CrossRef] [PubMed]
  19. J. M. Inman, J. L. Bentley, S. N. Houde-Walter, “Modeling ion-exchanged glass photonics: the modified quasi-chemical diffusion coefficient,” J. Non-Cryst. Solids 191, 1–2 (1995). [CrossRef]
  20. J. L. Bentley, “Integration of the design and manufacture of gradient-index optical systems,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1995).
  21. C. J. Harkrider, D. T. Moore, “Time varying boundary condition diffusion for gradient-index design,” in International Optical Design Conference 1998, L. R. Gardner, K. P. Thompson, eds., Proc. SPIE3482, 780–788 (1998). [CrossRef]
  22. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited