OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 16 — Jun. 1, 2000
  • pp: 2823–2830

Blood-flow measurements with a small number of scattering events

Pavel Starukhin, Sergey Ulyanov, Ekaterina Galanzha, and Valery Tuchin  »View Author Affiliations


Applied Optics, Vol. 39, Issue 16, pp. 2823-2830 (2000)
http://dx.doi.org/10.1364/AO.39.002823


View Full Text Article

Enhanced HTML    Acrobat PDF (429 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Results of simulations of the diffraction of a laser beam by a small blood vessel imbedded in scattering tissue are presented. The form of the spectra of biospeckle intensity fluctuations is analyzed. The Doppler shift of intensity fluctuations of scattered light is investigated as a function of the laser beam radius, the radius of the blood vessel, the depth of the vessel in the tissue, and the scattering characteristics of flowing blood. A formula that serves as the basis for a method of absolute measurements of blood-flow velocity is derived.

© 2000 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(290.0290) Scattering : Scattering
(290.4210) Scattering : Multiple scattering

History
Original Manuscript: July 23, 1999
Revised Manuscript: January 3, 2000
Published: June 1, 2000

Citation
Pavel Starukhin, Sergey Ulyanov, Ekaterina Galanzha, and Valery Tuchin, "Blood-flow measurements with a small number of scattering events," Appl. Opt. 39, 2823-2830 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-16-2823


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. E. Riva, B. Ross, G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol 11, 936–944 (1972). [PubMed]
  2. H. Mishina, T. Asakura, S. Nagai, “A laser Doppler microscope,” Opt. Commun. 11, 99–102 (1974). [CrossRef]
  3. B. A. Levenko, A. V. Priezzhev, S. G. Proskurin, N. B. Savchenko, “Laser Doppler microscopy of biological objects with various optical properties,” Bull. Russ. Acad. Sci. Phys. 59, 1070–1075 (1995).
  4. Y. Aizu, T. Asakura, A. Kujimn, “Compensation of eye movements in retinal speckle flowmetry using flexible correlation analysis based on the specific variance,” J. Biomed. Opt. 3, 227–236 (1998). [CrossRef] [PubMed]
  5. Y. Aizu, K. Ogino, T. Sugita, T. Yamamoto, N. Takai, T. Asakura, “Evaluation of blood flow at ocular fundus by using laser speckle,” Appl. Opt. 31, 3020–3029 (1992). [CrossRef] [PubMed]
  6. C. E. Riva, J. E. Grunwald, S. H. Sinclair, K. O’Keefe, “Fundus camera based retinal LDV,” Appl. Opt. 20, 117–120 (1981). [CrossRef] [PubMed]
  7. G. T. Feke, A. Yoshida, C. L. Schepens, “Laser based instruments for occular blood flow assessment,” J. Biomed. Opt. 3, 415–422 (1998). [CrossRef] [PubMed]
  8. Y. Aizu, T. Asakura, “Bio-speckle phenomena and their application to the evaluation of blood flow,” Opt. Laser Technol. 23, 205–219 (1991). [CrossRef]
  9. Y. Aizu, H. Ambar, T. Yamamoto, T. Asakura, “Measurements of flow velocity in a microscopic region using dynamic laser speckles based on the photon correlation,” Opt. Commun. 72, 269–273 (1989). [CrossRef]
  10. S. S. Ul’yanov, “The peculiarities of manifestation of the Doppler effect at the scattering of focused Gaussian beams on moving random inhomogeneous media,” Bull. Russ. Acad. Sci. Phys. 59, 133–137 (1995).
  11. S. S. Ul’yanov, “A new type of manifestation of Doppler effect. “An application to blood and lymph flow measurements,” Opt. Eng. 34, 2850–2855 (1995). [CrossRef]
  12. S. S. Ulyanov, “Speckled speckles statistics with a small number of scatterers, an implication for blood flow measurements,” J. Biomed. Opt. 3, 237–245 (1998). [CrossRef] [PubMed]
  13. S. S. Ul’yanov, “Dynamic of statistically inhomogeneous speckles: a new type of manifestation of Doppler effect,” Opt. Lett. 20, 1313–1315 (1995). [CrossRef]
  14. J. D. Briers, S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996). [CrossRef] [PubMed]
  15. J. D. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13, 345–350 (1996). [CrossRef]
  16. Y. Aizu, T. Asakura, “Coherent optical techniques for diagnostics of retinal blood flow,” J. Biomed. Opt. 4, 61–75 (1999). [CrossRef] [PubMed]
  17. T. Eiju, M. Nagai, K. Matsuda, J. Ohtsubo, K. Homma, K. Shimizu, “Microscopic laser Doppler velocimeter for blood velocity measurements,” Opt. Eng. 32, 15–20 (1993). [CrossRef]
  18. W. Ruetten, T. Gellekum, K. Jessen, “Investigation of laser Doppler techniques using the Monte Carlo method,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 277–288 (1995). [CrossRef]
  19. A. Perlin, T.-K. Hung, “Flow development of a train of particles in capillaries,” J. Eng. Mech. Div. EM1, 49–66 (1978).
  20. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999). [CrossRef] [PubMed]
  21. A. Kiele, R. Hibst, “A new optimal wavelength for treatment of port wine stains,” Phys. Med. Biol. 40, 1559–1576 (1995). [CrossRef]
  22. V. V. Tuchin, S. R. Utz, I. V. Yaroslavsky, “Tissue optics, light propagation, and spectroscopy,” Opt. Eng. 33, 3178–3188 (1994). [CrossRef]
  23. A. D. Aczel, Complete Business Statistics (Irwin, Homewood, Ill., 1989).
  24. J. S. Bendat, A. G. Piersol, Random Data. Analysis and Measurements Procedures (Wiley, New York, 1986).
  25. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler blood flowmetry using two waveguides: Monte Carlo simulations and measurements,” Appl. Opt. 33, 3549–3558 (1994). [CrossRef] [PubMed]
  26. F. F. de Mul, W. Steenbergen, T. Vonck, J. Greve, “Coherence effects in modeling laser-Doppler perfusion flowmetry,” in CIS Selected Papers: Coherence-Domain Methods in Biomedical Optics, V. V. Tuchin, ed., Proc. SPIE2732, 123–133 (1996).
  27. S. S. Ulyanov, V. V. Tuchin, A. A. Bednov, G. E. Brill, E. I. Zakharova, “Speckle-interferometric method in application to the blood and lymph flow monitoring in microvessels,” Lasers Med. Sci. 12, 31–41 (1997). [CrossRef]
  28. A. A. Bednov, S. S. Ul’yanov, V. V. Tuchin, G. E. Brill, E. I. Zakharova, “Investigations of dynamics of lymph flow by means of speckle interferometric method,” Appl. Non-linear Dyn. 4, 42–51 (1996).
  29. A. P. Shepherd, P. A. Oberg, eds., Laser Doppler Blood Flowmetry, (Kluwer Academic, Boston, 1989).
  30. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992). [CrossRef] [PubMed]
  31. P. Yu Starukhin, S. S. Ulyanov, V. V. Tuchin, “Monte-Carlo simulation of Doppler shift for laser light propagation in a highly scattering medium,” in Nonlinear Dynamics and Structures in Biology and Medicine: Optical and Laser Technologies: International Workshop, V. V. Tuchin, ed., Proc. SPIE3053, 42–47 (1997). [CrossRef]
  32. L. Stevens, Applied Multivariate Statistics for the Social Sciences (Erlbaum, Hillsdale, N.J., 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited