OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 16 — Jun. 1, 2000
  • pp: 2840–2852

Inclusion Characterization in a Scattering Slab with Time-Resolved Transmittance Measurements: Perturbation Analysis

Michel Morin, Sonia Verreault, Alain Mailloux, Julie Fréchette, Stéphane Chatigny, Yves Painchaud, and Pierre Beaudry  »View Author Affiliations


Applied Optics, Vol. 39, Issue 16, pp. 2840-2852 (2000)
http://dx.doi.org/10.1364/AO.39.002840


View Full Text Article

Acrobat PDF (186 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A procedure for the time-domain optical characterization of an inclusion in a scattering slab is investigated theoretically and experimentally. The method relies on the measurement of a contrast function, which is defined as the time-dependent relative change in the transmitted signal resulting from the presence of the inclusion. Analytical expressions for the contrast functions of absorptive and diffusive inclusions are obtained through a perturbation solution of the diffusion equation. This procedure is used successfully to determine the optical properties of absorptive, diffusive, and mixed inclusions located at midplane in a scattering slab by use of time-resolved transmittance measurements.

© 2000 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(110.7050) Imaging systems : Turbid media
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3830) Medical optics and biotechnology : Mammography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.7050) Medical optics and biotechnology : Turbid media
(290.1990) Scattering : Diffusion
(290.7050) Scattering : Turbid media

Citation
Michel Morin, Sonia Verreault, Alain Mailloux, Julie Fréchette, Stéphane Chatigny, Yves Painchaud, and Pierre Beaudry, "Inclusion Characterization in a Scattering Slab with Time-Resolved Transmittance Measurements: Perturbation Analysis," Appl. Opt. 39, 2840-2852 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-16-2840


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. Chance, R. R. Alfano, and B. J. Tromberg, eds., Optical Tomography and Spectroscopy of Tissue III, Proc. SPIE 3597, (1999).
  2. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, San Diego, Calif., 1978), Vol. 1.
  3. J.-M. Kaltenbach and M. Kaschke, “Frequency- and time-domain modeling of light transport in random media,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müeller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash., 1993), pp. 65–86.
  4. S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance and A. Katzir, eds., Proc. SPIE 1431, 204–215 (1991).
  5. H. L. Graber, J. Chang, R. Aronson, and R. L. Barbour, “A perturbation model for imaging in dense scattering media: derivation and evaluation of imaging operators,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müeller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash., 1993), pp. 121–143.
  6. R. L. Barbour, H. L. Graber, Y. Wang, J.-H. Chang, and R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müeller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash., 1993), pp. 87–120.
  7. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance and R. R. Alfano, eds., Proc. SPIE 1888, 360–371 (1993).
  8. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
  9. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Simultaneous scattering and absorption images of heterogeneous media using diffusive waves within the Rytov approximation,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance and R. R. Alfano, eds., Proc. SPIE 2389, 320–327 (1995).
  10. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
  11. Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14, 325–342 (1997).
  12. M. J. Eppstein, D. E. Dougherty, T. L. Troy, and E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parametrization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
  13. H. Rinneberg, D. Grosenick, H. Wabnitz, H. Danlewski, K. Moesta, and P. Schlag, “Time-domain optical mammography: results on phantoms, healthy volunteers, and patients,” in Biomedical Optical Spectroscopy and Diagnostics/Therapeutic Laser Applications, E. M. Sevick-Muraca, J. A. Izatt, and M. N. Ediger, eds., Vol. 22 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 148–150.
  14. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties on breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
  15. Y. Painchaud, A. Mailloux, É. Harvey, S. Verreault, J. Fréchette, C. Gilbert, M. L. Vernon, and P. Beaudry, “Multiport time-domain laser mammography: results on solid phantom and volunteers,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, and B. J. Tromberg, eds., Proc. SPIE 3597, 548–555 (1999).
  16. J. C. Hebden, D. J. Hall, M. Firbank, and D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
  17. Y. Painchaud, A. Mailloux, M. Morin, S. Verreault, and P. Beaudry, “Time-domain optical imaging: discrimination between scattering and absorption,” Appl. Opt. 38, 3686–3693 (1999).
  18. A. Gandjbakhche, R. F. Bonner, R. Nossal, and G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 35, 1767–1774 (1996).
  19. J. C. Hebden and S. R. Arridge, “Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain,” Appl. Opt. 35, 6788–6796 (1996).
  20. A. H. Gandjbakhche, V. Chernomordik, R. F. Bonner, J. C. Hebden, and R. Nossal, “Use of time-dependent contrast functions to discriminate between the scattering and absorption properties of abnormal regions hidden within a tissuelike phantom,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance and R. R. Alfano, eds., Proc. SPIE 2979, 211–218 (1997).
  21. A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, and R. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
  22. S. R. Arridge, “Photon-measurement density functions. Part 1: analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
  23. M. Morin, S. Chatigny, A. Mailloux, Y. Painchaud, and P. Beaudry, “Time-domain perturbation analysis of a scattering slab,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, and B. J. Tromberg, eds., Proc. SPIE 3597, 67–78 (1999).
  24. M. S. Patterson, B. Chance, and B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
  25. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997).
  26. M. Bassini, F. Martelli, G. Zaccanti, and D. Contini, “Independence of the diffusion coefficient from absorption: experimental and numerical evidence,” Opt. Lett. 22, 853–855 (1997).
  27. E. Butkov, Mathematical Physics (Addison-Wesley, Reading, Mass., 1968).
  28. M. R. Ostermeyer and S. L. Jacques, “Perturbation theory for diffuse light transport in complex biological tissues,” J. Opt. Soc. Am. A 14, 255–261 (1997).
  29. H. L. Graber, R. L. Barbour, J. Chang, and R. Aronson, “Identification of the functional form of nonlinear effects of localized finite absorption in a diffusing medium,” in X-Ray Detector Physics and Applications, R. B. Hoover, ed., Proc. SPIE 1736, 669–681 (1995).
  30. R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995).
  31. R. M. Bethea, B. S. Duran, and T. L. Boullion, Statistical Methods for Engineers and Scientists, Third Edition, Revised and Expanded (Marcel Dekker, New York, 1995).
  32. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
  33. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited