OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 18 — Jun. 20, 2000
  • pp: 3093–3098

Thermally Boosted Pumping of Neodymium Lasers

Raphael Lavi and Steven Jackel  »View Author Affiliations


Applied Optics, Vol. 39, Issue 18, pp. 3093-3098 (2000)
http://dx.doi.org/10.1364/AO.39.003093


View Full Text Article

Acrobat PDF (104 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Pumping at 885 nm from thermally excited ground-state levels directly to the Nd:YAG upper lasing level is experimentally demonstrated by use of a Ti:sapphire pump laser. This approach utilizes thermal energy contained within the laser medium to provide part of the pump energy required to achieve population inversion. Slope efficiency increased by 12% compared with traditional pump band excitation (λpump = 808 nm) and by 7% compared with ground-state direct pumping (λpump = 869 nm). The combined transition from the first and second thermally excited Stark components of the ground state (4I9/2) to the upper lasing level (4F3/2) has characteristics that make thermally boosted pumping a suitable candidate for use with diode lasers: reasonable absorption (1.8 cm−1) and bandwidth (2.7 nm FWHM). A model suggests that, compared with traditional 808-nm pumping, heat could be reduced by 40% by use of thermally boosted pumping.

© 2000 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects

Citation
Raphael Lavi and Steven Jackel, "Thermally Boosted Pumping of Neodymium Lasers," Appl. Opt. 39, 3093-3098 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-18-3093


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
  2. D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
  3. M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
  4. B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, “High average power diode pumped slab laser,” IEEE J. Quantum Electron. 28, 992–996 (1992).
  5. S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, and K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in OSA Trends in Optics and Photonics, Vol. 26 of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds. (Optical Society of America, Washington, D.C., 1999), pp. 38–44.
  6. Q. Lu, N. Kugler, H. Weber, S. Dong, N. Muller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
  7. S. Jackel, I. Moshe, A. Kaufman, R. Lavi, and R. Lallouz, “High energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
  8. S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
  9. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997).
  10. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature (London) 377, 500–502 (1995).
  11. S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–121 (1999).
  12. M. Ross, “YAG laser operation by semiconductor laser pumping,” Proc. IEEE 56, 196–197 (1968).
  13. R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, and I. Paiss, “Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level,” Appl. Opt. 38, 7382–7385 (1999).
  14. J. T. Verdeyen, Laser Electronics, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1989), p. 232.
  15. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1995), pp. 98–99.
  16. Ref. 15, p. 93.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited