OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 19 — Jul. 1, 2000
  • pp: 3304–3313

Analysis of optical elements with the local plane-interface approximation

Albrecht v. Pfeil, Frank Wyrowski, Andreas Drauschke, and Harald Aagedal  »View Author Affiliations


Applied Optics, Vol. 39, Issue 19, pp. 3304-3313 (2000)
http://dx.doi.org/10.1364/AO.39.003304


View Full Text Article

Enhanced HTML    Acrobat PDF (1956 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The local plane-interface approximation (LPIA) is a method for propagating electromagnetic fields through the inhomogeneous regions (e.g., elements) of an optical system. The LPIA is the superclass of all approximations that replace the usually curved optical interfaces with local tangential planes. Therefore the LPIA is restricted to smooth optical surfaces. A maximum radius of curvature of the optical interface of the order of a few wavelengths is a rough estimate for the validity of the LPIA. Two important approximation levels of the LPIA are the thin-element approximation (TEA) and a geometric-optical version of the LPIA (LPIAray). The latter combines the wave-optical propagation of an electromagnetic field in the homogeneous region of an optical system with a ray-tracing step in the inhomogeneous region. We discuss the regions of validity of the LPIA in general and the approximation levels LPIAray and TEA in detail.

© 2000 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.1970) Diffraction and gratings : Diffractive optics
(120.5710) Instrumentation, measurement, and metrology : Refraction
(350.3950) Other areas of optics : Micro-optics
(350.4600) Other areas of optics : Optical engineering

History
Original Manuscript: December 8, 1999
Revised Manuscript: April 17, 2000
Published: July 1, 2000

Citation
Albrecht v. Pfeil, Frank Wyrowski, Andreas Drauschke, and Harald Aagedal, "Analysis of optical elements with the local plane-interface approximation," Appl. Opt. 39, 3304-3313 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-19-3304


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Stamnes, Waves in Focal Regions. Propagation, Diffraction and Focusing of Light, Sound and Water Waves (Adam Hilger, Bristol, UK, 1986).
  2. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995). [CrossRef]
  3. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1991).
  4. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  5. E.-B. Kley, F. Thoma, U. Zeitner, L. Wittig, H. Aagedal, “Fabrication of micro-optical surface profiles by using gray scale masks,” in Miniaturized Systems with Micro-Optics and Micromechanics III, R. Goering, M. Motamedi, eds., Proc. SPIE3276, 254–262 (1997). [CrossRef]
  6. M. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994). [CrossRef]
  7. G. Blough, M. Morris, “Hybrid lenses offer high performance at low cost,” Laser Focus World 31(11) , 67–74 (1995).
  8. M. T. Gale, “Direct writing of continuous-relief micro-optics,” in Micro-Optics, H. P. Herzig, ed. (Taylor & Francis, London, 1997), pp. 87–126.
  9. M. B. Fleming, M. C. Hutley, “Blazed diffractive optics,” Appl. Opt. 36, 4635–4643 (1997). [CrossRef] [PubMed]
  10. D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresists,” J. Meas. Sci. Technol. 1, 759–766 (1990). [CrossRef]
  11. D. W. Sweeney, G. E. Sommargren, “Harmonic diffractive lenses,” Appl. Opt. 34, 2469–2475 (1995). [CrossRef] [PubMed]
  12. T. R. Sales, G. M. Morris, “Diffractive-refractive behavior of kinoform lenses,” Appl. Opt. 36, 253–257 (1997). [CrossRef] [PubMed]
  13. S. Sinzinger, M. Testorf, “Transition between diffractive and refractive micro-optical components,” Appl. Opt. 34, 5970–5976 (1995). [CrossRef] [PubMed]
  14. M. Rossi, R. E. Kunz, H. P. Herzig, “Refractive and diffractive properties of planar micro-optical elements,” Appl. Opt. 34, 5996–6007 (1995). [CrossRef] [PubMed]
  15. D. Faklis, G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462–2468 (1995). [CrossRef] [PubMed]
  16. P. Beckmann, “Scattering of light by rough surfaces,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1967), Vol. 6, pp. 53–69. [CrossRef]
  17. G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” (Massachusetts Institute of Technology, Cambridge, Mass., 1991).
  18. E. Noponen, J. Turunen, A. Vasara, “Electromagnetic theory and design of diffractive-lens arrays,” J. Opt. Soc. Am. A 10, 434–443 (1993). [CrossRef]
  19. M. Rossi, C. G. Blough, D. H. Raguin, E. K. Popov, D. Maystre, “Diffraction efficiency of high-NA continuous-relief diffractive lenses,” in Diffractive Optics and Microoptics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 233–236.
  20. J. J. Stamnes, H. Heier, “Scalar and electromagnetic diffraction point-spread functions,” Appl. Opt. 37, 3612–3622 (1998). [CrossRef]
  21. I. N. Bronstein, K. A. Semendjajew, Taschenbuch der Mathematik (Verlag Harri Deutsch, Thun und Frankfurt/Main, Germany, 1989).
  22. D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994). [CrossRef]
  23. H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966). [CrossRef]
  24. M. T. Gale, M. Rossi, “Continuous-relief diffractive lenses and microlens arrays,” in Diffractive Optics for Industrial and Commercial Applications, J. Turunen, F. Wyrowski, eds. (Akademie Verlag, Berlin, 1997), pp. 103–145.
  25. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).
  26. A. v. Pfeil, F. Wyrowski, “Wave-optical structure design with the local plane-interface approximation,” J. Mod. Opt. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited