OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 19 — Jul. 1, 2000
  • pp: 3333–3337

Fast imaging of hard x rays with a laboratory microscope

Alex S. Bakulin, Stephen M. Durbin, Terrence Jach, and Joseph Pedulla  »View Author Affiliations

Applied Optics, Vol. 39, Issue 19, pp. 3333-3337 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (885 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An improved x-ray microscope with a fully electronic CCD detector system has been constructed that allows improved laboratory-based microstructural investigations of materials with hard x rays. It uses the Kirkpatrick–Baez multilayer mirror design to form an image that has a demonstrated resolution of 4 µm at 8 keV (Cu Kα radiation). This microscope performs well with standard sealed-tube laboratory x-ray sources, producing digital images with 20-s exposure times for a 5-µm Au grid (a thickness of two absorption lengths).

© 2000 Optical Society of America

OCIS Codes
(340.0340) X-ray optics : X-ray optics
(340.7440) X-ray optics : X-ray imaging
(340.7460) X-ray optics : X-ray microscopy

Original Manuscript: December 2, 1999
Revised Manuscript: April 6, 2000
Published: July 1, 2000

Alex S. Bakulin, Stephen M. Durbin, Terrence Jach, and Joseph Pedulla, "Fast imaging of hard x rays with a laboratory microscope," Appl. Opt. 39, 3333-3337 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. H. Levine, A. R. Kalukin, S. P. Frigo, I. McNulty, M. Kuhn, “Tomographic reconstruction of an integrated circuit interconnect,” Appl. Phys. Lett. 74, 150–152 (1999). [CrossRef]
  2. P. Spanne, J. H. Thovert, C. J. Jacquin, W. B. Lindquist, K. W. Jones, P. M. Adler, “Synchrotron computed microtomography of porous media—topology and transports,” Phys. Rev. Lett. 73, 2001–2004 (1994). [CrossRef] [PubMed]
  3. T. E. Gureyev, C. Raven, A. Snigirev, I. Snigireva, S. W. Wilkins, “Hard x-ray quantitative non-interferometric phase-contrast microscopy,” J. Phys. D 32, 563–567 (1999). [CrossRef]
  4. A. Bakulin, S. M. Durbin, C. Liu, J. Erdmann, A. T. Macrander, T. Jach, “Use of Kirkpatrick-Baez multilayer optics for x-ray fluorescence imaging,” in Crystal and Multilayer Optics, A. T. Macrander, A. K. Freund, T. Ishikawa, D. M. Mills, eds., Proc. SPIE3448, 218–223 (1998). [CrossRef]
  5. P. Kirkpatrick, A. Baez, “Formation of optical images by x-rays,” J. Opt. Soc. Am. 38, 766–774 (1948). [CrossRef] [PubMed]
  6. J. F. McGee, “A long wavelength x-ray microscope,” in X-Ray Microscopy and Microradiography, V. E. Coslett, A. Engstrom, H. H. Pattee, eds. (Academic, New York, 1957), pp. 164–176.
  7. J. H. Underwood, T. W. Barbee, C. Frieber, “X-ray microscope with multilayer mirrors,” Appl. Opt. 25, 1730–1732 (1986). [CrossRef] [PubMed]
  8. J. H. Underwood, “High-energy x-ray microscopy with multilayer reflectors,” Rev. Sci. Instrum. 57, 2119–2123 (1986). [CrossRef]
  9. J. H. Underwood, A. C. Thompson, Y. Wu, R. D. Giauque, “X-ray microprobe using multilayer mirrors,” Nucl. Instrum. Methods Phys. Res. A 266, 296–302 (1988). [CrossRef]
  10. A. C. Thompson, J. H. Underwood, Y. Wu, R. D. Giauque, K. W. Jones, M. L. Rivers, “Elemental measurements with an x-ray microprobe of biological and geological samples with femtogram sensitivity,” Nucl. Instrum. Methods A 266, 318–323 (1988). [CrossRef]
  11. Y. Wu, A. C. Thompson, J. H. Underwood, R. D. Giauque, K. Chapman, M. L. Rivers, K. W. Jones, “A tunable x-ray microprobe using synchrotron radiation,” Nucl. Instrum. Methods A 291, 146–151 (1990). [CrossRef]
  12. Y. Suzuki, F. Uchida, “Hard x-ray microprobe with total reflection mirrors,” Rev. Sci. Instrum. A 345, 578–580 (1992). [CrossRef]
  13. C. Kunz, “X-ray microscopy,” Phys. Scr. T61, 19–25 (1996). [CrossRef]
  14. J. Cazaux, D. Erre, D. Mouze, J. M. Patat, S. Rondot, A. Sasov, P. Trebbia, A. Zolfaghari, “Recent developments in x-ray projection microscopy and x-ray microtomography applied to materials science,” J. Phys. (Paris) IV 3, 2099–2104 (1993).
  15. H. Elhila, A. Zolfaghari, J. Cazaux, J. C. Audran, D. Mouze, “X-ray microscopy and microtomography: application in biology,” J. Phys. (Paris) IV 6, 739–745 (1996).
  16. D. Erre, H. Jibaoui, J. Cazaux, “X-ray microscopy by total reflectivity and grazing incidence Kossel diffraction,” J. Phys. (Paris) IV 6, 393–398 (1996).
  17. D. Erre, E. Bourelle, B. Claude-Montigny, A. Metrot, J. Cazaux, “Following the intercalation process of H2SO4 into pyrographite by x-ray microscopy,” Phys. Rev. Sect. B 56, 4944–4948 (1997). [CrossRef]
  18. C. Welnak, G. Chen, F. Cerrina, “Shadow: a synchrotron radiation and x-ray optics simulation tool,” Nucl. Instrum. Methods Phys. Res. A 347, 344–347 (1994). [CrossRef]
  19. R. N. Watts, D. L. Ederer, R. D. Deslattes, T. B. Lucatorto, W. T. Estler, C. J. Evans, T. V. Vorburger, “Upgraded facility for multilayer mirror characterization at NIST,” in Multilayer Optics for Advanced X-Ray Applications, N. M. Ceglio, ed., Proc. SPIE1547, 159–166 (1991). [CrossRef]
  20. V. G. Kohn, “On the theory of reflectivity by an x-ray multilayer mirror,” Phys. Status Solidi B 187, 61–70 (1995). [CrossRef]
  21. T. Wroblewski, O. Glaub, H.-A. Crostack, A. Ertel, F. Fandrich, Ch. Genzel, K. Hradil, W. Ternes, E. Woldt, “A new diffractometer for materials science and imaging at HASYLAB beamline G3,” Nucl. Instrum. Methods A 428, 570–582 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited