OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 19 — Jul. 1, 2000
  • pp: 3344–3356

Excitation-and-collection geometry insensitive fluorescence imaging of tissue-simulating turbid media

Jianan Y. Qu, Zhijian Huang, and Jianwen Hua  »View Author Affiliations

Applied Optics, Vol. 39, Issue 19, pp. 3344-3356 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (1540 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an imaging technique for the correction of geometrical effects in fluorescence measurement of optically thick, turbid media such as human tissue. Specifically, we use the cross-polarization method to reject specular reflection and enhance the diffusive backscattering of polarized fluorescence excitation light from the turbid media. We correct the nonuniformity of the image field caused by the excitation-and-collection geometry of a fluorescence imaging system by normalizing the fluorescence image to the cross-polarized reflection image. The ratio image provides a map of relative fluorescence yield, defined as the ratio of emerging fluorescence power to incident excitation, over the surface of an imaged homogeneous turbid medium when fluorescence excitation-and-collection geometries vary in a wide range. We investigate the mechanism of ratio imaging by using Monte Carlo modeling. Our findings show that this technique could have a potential use in the detection of early cancer, which usually starts from a superficial layer of tissue, based on the contrast in the tissue fluorescence of an early lesion and of the surrounding normal tissue.

© 2000 Optical Society of America

OCIS Codes
(110.7050) Imaging systems : Turbid media
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

Original Manuscript: June 7, 1999
Revised Manuscript: February 16, 2000
Published: July 1, 2000

Jianan Y. Qu, Zhijian Huang, and Jianwen Hua, "Excitation-and-collection geometry insensitive fluorescence imaging of tissue-simulating turbid media," Appl. Opt. 39, 3344-3356 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Alfano, D. B. Tat, J. Cordero, P. Tomashefsky, F. W. Longo, M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507–1511 (1984). [CrossRef]
  2. A. E. Profio, D. R. Doiron, J. Sarnaik, “Fluorometer for endoscopic diagnosis of tumors,” Med. Phys. 11, 516–520 (1984). [CrossRef] [PubMed]
  3. C. Kittrell, P. L. Willett, C. de los Santos-Pacheo, N. B. Ratliff, J. R. Kramer, E. G. Malk, M. S. Feld, “Diagnosis of fibrous arterial atherosclerosis using fluorescence,” Appl. Opt. 24, 2280–2281 (1985). [CrossRef] [PubMed]
  4. P. Lenz, “Endoscopic fluorescence detector,” Rev. Sci. Instrum. 59, 930–933 (1988). [CrossRef]
  5. R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990). [CrossRef] [PubMed]
  6. J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991). [CrossRef] [PubMed]
  7. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994). [CrossRef] [PubMed]
  8. J. Qu, C. MacAulay, S. Lam, B. Palcic, “Laser-induced fluorescence spectroscopy at endoscopy: tissue optics, Monte Carlo modeling, and in vivo measurements,” Opt. Eng. 34, 3334–3343 (1995). [CrossRef]
  9. S. Warren, K. Pope, Y. Yazdi, A. J. Welch, S. Thomsen, A. L. Johnston, M. J. Davis, R. Richards-Kortum, “Combined ultrasound and fluorescence spectroscopy for physico-chemical imaging of atherosclerosis,” IEEE Trans. Biomed. Eng. 42, 121–132 (1995). [CrossRef] [PubMed]
  10. T. D. Wang, J. van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111, 1182–1191 (1996). [CrossRef] [PubMed]
  11. G. A. Wagnieres, A. P. Studzinski, H. E. van den Bergh, “An endoscopic fluorescence imaging system for simultaneous visual examination and photodetection of cancers,” Rev. Sci. Instrum. 68, 203–212 (1997). [CrossRef]
  12. K. Tumer, N. Ramanujam, J. Ghosh, R. Richards-Kortum, “Ensembles of radial basis function networks for spectroscopic detection of cervical precancer,” IEEE Trans. Biomed. Eng. 45, 953–961 (1998). [CrossRef] [PubMed]
  13. J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993). [CrossRef] [PubMed]
  14. C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996). [CrossRef] [PubMed]
  15. L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multilayered tissue in standard C” (University of Texas, Houston, Tex., 1992).
  16. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  17. S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997). [CrossRef] [PubMed]
  18. S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66, 821–825 (1997). [CrossRef]
  19. L. T. Perelman, V. Backman, J. Wu, R. R. Dasari, M. S. Feld, “Spectroscopic diagnostics of epithelial tissues with polarized light,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 474–479 (1999). [CrossRef]
  20. J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992). [CrossRef] [PubMed]
  21. G. D. Lewis, D. L. Jordan, P. J. Roberts, “Backscattering target detection in a turbid medium by polarization discrimination,” Appl. Opt. 38, 3937–3944 (1999). [CrossRef]
  22. S. Jutamulia, T. Asakura, “Reduction of coherent noise using various artificial incoherent sources,” Optik 70, 52–57 (1985).
  23. R. Smith, S. Ahmad, A. Voudas, J. Spencer, A. Russel, G. R. Jones, “Chromatic modulation for optical fiber sensing electromagnetic and speckle noise analysis,” J. Mod. Opt. 39, 2301–2314 (1992). [CrossRef]
  24. T. Iwai, T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996). [CrossRef]
  25. B. W. Pogue, L. Lilge, M. S. Patterson, B. C. Wilson, T. Hasan, “Absorbed photodynamic dose from pulsed versus continuous wave light examined with tissue-simulating dosimeters,” Appl. Opt. 36, 7257–7269 (1997). [CrossRef]
  26. L. Wang, X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997). [CrossRef]
  27. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
  28. W. Pickering, S. A. Prahl, N. van Wierington, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993). [CrossRef] [PubMed]
  29. J. Qu, C. MacAulay, S. Lam, B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33, 7397–7405 (1994). [CrossRef] [PubMed]
  30. A. J. Drukin, S. Jaikumar, R. Richards-Kortum, “Optically dilute, absorbing, and turbid phantoms for fluorescence spectroscopy of homogeneous and inhomogeneous samples,” Appl. Spectrosc. 47, 2114–2121 (1993). [CrossRef]
  31. M. Kohl, M. Essenpreis, M. Cope, “The influence of glucose upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267–1287 (1995). [CrossRef] [PubMed]
  32. D. W. Leonard, K. M. Meek, “Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma,” Biophys. J. 72, 1382–1387 (1997). [CrossRef] [PubMed]
  33. E. J. van Kampen, W. G. Zilstra, “Determination of hemoglobin and its derivatives,” in Advances in Clinical Chemistry, H. Sobotka, C. P. Stewart, eds. (Academic, New York, 1965), Vol. 8, pp 158–187.
  34. O. W. van Assendelft, Spectrophotometry of haemoglobin derivatives (Royal Vangorcum, Assen, The Netherlands, 1970).
  35. L. Wang, S. L. Jacques, “Analysis of diffusion theory and similarity relations,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 107–116 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited