OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 2 — Jan. 10, 2000
  • pp: 231–237

Wiener-like correlation filters

Jehad Khoury, Peter D. Gianino, and Charles L. Woods  »View Author Affiliations


Applied Optics, Vol. 39, Issue 2, pp. 231-237 (2000)
http://dx.doi.org/10.1364/AO.39.000231


View Full Text Article

Enhanced HTML    Acrobat PDF (196 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a new, to our knowledge, design for a Wiener-like correlation filter, which consists of cascading a phase-only filter (POF) with a photorefractive Wiener-like filter. Its performance is compared with that of the POF and the Wiener correlation filter (WCF). Correlation results show that for intermediate and higher levels of noise this correlation filter has a peak-to-noise ratio that is larger than that of either the POF or the WCF while still preserving a correlation peak that is almost as high as that of the POF.

© 2000 Optical Society of America

OCIS Codes
(070.4550) Fourier optics and signal processing : Correlators
(090.0090) Holography : Holography
(100.5010) Image processing : Pattern recognition
(160.5320) Materials : Photorefractive materials
(200.4740) Optics in computing : Optical processing

History
Original Manuscript: June 24, 1999
Revised Manuscript: October 18, 1999
Published: January 10, 2000

Citation
Jehad Khoury, Peter D. Gianino, and Charles L. Woods, "Wiener-like correlation filters," Appl. Opt. 39, 231-237 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-2-231


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill Physical and Quantum Electronics Series (McGraw-Hill, New York, 1968), Chap. 7, p. 180.
  2. J. L. Horner, P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984). [CrossRef] [PubMed]
  3. J. L. Horner, J. R. Leger, “Pattern recognition with binary phase-only filters,” Appl. Opt. 24, 609–611 (1985). [CrossRef] [PubMed]
  4. D. L. Flannery, “Optimal trade-off distortion-tolerant constrained-modulator correlation filter,” J. Opt. Soc. Am. A 12, 66–72 (1995). [CrossRef]
  5. Ph. Réfrégier, B. V. K. Vijaya Kumar, C. Hendrix, “Multicriteria optimal binary amplitude phase-only filter,” J. Opt. Soc. Am. A 9, 2118–2125 (1992). [CrossRef]
  6. J. Figue, Ph. Réfrégier, “Optimality of trade-off filters,” Appl. Opt. 32, 1933–1935 (1993). [CrossRef] [PubMed]
  7. B. V. K. Vijaya Kumar, D. W. Carlson, A. Mahalanobis, “Optimal trade-off synthetic discriminant function filter for arbitrary devices,” Opt. Lett. 19, 1556–1558 (1994). [CrossRef]
  8. L. P. Yaroslavsky, “Is the phase-only filter and its modification optimal in terms of the discrimination capability in pattern recognition?” Appl. Opt. 31, 1677–1679 (1992). [CrossRef] [PubMed]
  9. R. D. Juday, “Optimal realizable filters and the minimum Euclidean distance principle,” Appl. Opt. 32, 5100–5111 (1993). [CrossRef] [PubMed]
  10. J. D. Downie, J. F. Walkup, “Optimal correlation filter for images with signal-dependent noise,” J. Opt. Soc. Am. A 11, 1599–1609 (1994). [CrossRef]
  11. H. J. Caulfield, W. T. Maloney, “Improved discrimination in optical character recognition,” Appl. Opt. 8, 2354–2356 (1969). [CrossRef] [PubMed]
  12. L. Laude, Ph. Réfrégier, “Multicriteria characterization of coding domains with optimal Fourier spatial light modulator filters,” Appl. Opt. 33, 4465–4471 (1994). [CrossRef] [PubMed]
  13. Ph. Réfrégier, “Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency,” Opt. Lett. 16, 829–831 (1991). [CrossRef] [PubMed]
  14. Ph. Réfrégier, “Application of the stabilization functional approach to pattern-recognition filters,” J. Opt. Soc. Am. A 11, 1234–1252 (1994).
  15. B. V. K Vijaya Kumar, Z. Bahri, “Phase-only filters with improved signal-to-noise ratio,” Appl. Opt. 28, 250–257 (1989). [CrossRef]
  16. B. V. K. Vijaya Kumar, Z. Bahri, “Efficient algorithm for designing a ternary value filter yielding maximum signal-to-noise ratio,” Appl. Opt. 28, 1919–1925 (1989). [CrossRef]
  17. S. Yin, M. Lu, C. Chen, F. T. S. Yu, T. D. Hudson, D. K. McMillen, “Design of a bipolar composite filter by a simulated annealing algorithm,” Opt. Lett. 20, 1409–1411 (1995). [CrossRef] [PubMed]
  18. M. Lu, S. Yin, C. Chen, F. T. S. Yu, T. D. Hudson, D. K. McMillen, “Optimum synthesis of a bipolar composite reference function with a simulated annealing algorithm,” Opt. Eng. 35, 2710–2720 (1996). [CrossRef]
  19. G. Mu, X. Wang, Z. Wang, “Amplitude-compensated matched filtering,” Appl. Opt. 27, 3461–3463 (1988). [CrossRef] [PubMed]
  20. A. Awwal, M. Karim, S. Jahan, “Improved correlation discrimination using an amplitude-modulated phase-only filter,” Appl. Opt. 29, 233–236 (1990). [CrossRef] [PubMed]
  21. J. Fu, J. Khoury, M. Cronin-Golomb, C. Woods, “Photorefractive two-beam coupling optimal thresholding filter for additive signal dependent noise,” Appl. Opt. 34, 346–351 (1995). [CrossRef] [PubMed]
  22. J. Khoury, J. Fu, M. Cronin-Golomb, C. Woods, “Photorefractive deamplification of additive signal dependent noise,” Opt. Eng. 32, 2877–2883 (1993). [CrossRef]
  23. J. Khoury, M. Cronin-Golomb, C. L. Woods, “Noise reduction using adaptive spatial filtering in photorefractive two-beam coupling,” Opt. Lett. 16, 747–749 (1990). [CrossRef]
  24. J. Khoury, G. Asimellis, C. Woods, “Incoherent-erasure joint-transform correlator,” Opt. Lett. 20, 2321–2323 (1995);G. Asimellis, J. Khoury, C. Woods, “Effects of saturation on the nonlinear incoherent-erasure joint transform correlator,” J. Opt. Soc. Am. A 13, 1345–1356 (1996). [CrossRef] [PubMed]
  25. G. Asimellis, M. Cronin-Golomb, J. Khoury, J. Kane, C. Woods, “Analysis of the dual discrimination ability of the two-port joint transform correlator,” Appl. Opt. 34, 8154–8166 (1995);G. Asimellis, J. Khoury, J. Kane, C. Woods, “Two-port photorefractive joint transform correlator,” Opt. Lett. 20, 2517–2519 (1995). [CrossRef] [PubMed]
  26. J. Khoury, M. Cronin-Golomb, P. D. Gianino, C. L. Woods, “Photorefractive two-beam coupling nonlinear joint transform correlator,” J. Opt. Soc. Am. B11, 2167–2174 (1994); J. Khoury, M. Cronin-Golomb, J. Kane, C. L. Woods, “Two-port photorefractive correlator,” in OSA Annual Meeting Digest, Volume 16 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993).
  27. J. Khoury, G. Asimellis, P. D. Gianino, C. L. Woods, “Nonlinear compansive noise reduction in joint transform correlators,” Opt. Eng. 37, 66–73 (1998);J. Khoury, J. S. Kane, G. Asimellis, M. Cronin-Golomb, C. L. Woods, “All-optical nonlinear joint transform correlator,” Appl. Opt. 33, 8216–8225 (1994). [CrossRef] [PubMed]
  28. K. Lizuka, Engineering Optics, Vol. 36 of Springer Series on Applied Sciences (Springer-Verlag, Berlin, 1985).
  29. J. Horner, “Optical spatial filtering with the least mean-square-error filter,” J. Opt. Soc. Am. 59, 553–558 (1969). [CrossRef]
  30. A. Mahalanobis, B. V. K. Vijaya Kumar, D. Casasent, “Minimum average correlation energy filter,” Appl. Opt. 26, 3633–3640 (1987). [CrossRef] [PubMed]
  31. M. S. Alam, M. A. Karim, “Multiple target detection using modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994). [CrossRef]
  32. M. S. Alam, M. A. Karim, “Fringe-adjusted joint transform correlator,” Appl. Opt. 32, 4344–4350 (1993). [CrossRef] [PubMed]
  33. F. Cheng, P. Andres, F. T. S. Yu, D. Gregory, “Intensity compensation filter for joint transform correlation peak enhancement,” Appl. Opt. 32, 4357–4364 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited